Introduction

Modern Time and Frequency applications, such as Metrology, Time Scale, Time comparison, Deep Space mission + VLBI require highly stable frequency references.

Meeting such stringent specifications requires the implementation of a Primary Frequency Reference that generates signals with an accuracy better than 1E-12 at all times and very high frequency stability (typ \(s(t) \approx 7 \times 10^{-13} t^{-1/2} \) in the time domain.

Generally, this can be achieved using Cesium or Hydrogen Maser clock technology, often combined with GPS receivers as backup sources.

Unlike off-air receivers, Maser clocks are autonomous, self-contained primary references immune from external influences.

Passive Frequency Standard OSA-3700 PHM is the number one alternative to a high performance reference when state of the art stability and competitive accuracy are needed at a reasonable price.

Highlights

- Extremely stable frequency reference based on Hydrogen atom transition.
- Alternative technology to cesium reference sources.
- Far cheaper than active hydrogen Maser.
- Low cost hydrogen refurbishment.
- 2.048/5/10/100 MHz and 1 PPS standard outputs.
- Low phase noise output.
- Digital control and monitoring of all operations on LCD display.
- 10 minutes batteries backup.
- 3 years warranty on Physics package.
- Expected lifetime: 10-20 years.

Typical Applications

- Time and frequency measurement equipment
- Astronomy and space applications
- Satellite ground station
- Reference for test equipment and measuring quality of GPS driven oscillators.
Principle of operation

Hydrogen Maser principle of operation is based on quartz oscillator frequency locked to the frequency line of hydrogen atom emission of the discriminator. The influence of the discriminator RF-cavity frequency fluctuation on emission line is eliminated by RF-cavity frequency adjustment to quartz oscillator frequency.

As discriminator energy level emitted by hydrogen atoms is less than the sum of loss energy, FM excitation signal is introduced into the discriminator cavity to provide spectral line indication and frequency adjustment, controlled by the FLL processor.

The interrogation signal with the frequency of 1420.405 MHz is separated directly in the discriminator cavity. Due to the interaction of the FM interrogation signal with atom line and resonator cavity, signal is converted into AM signal.

Typical Characteristics

Internal reference:

- **Type:** Passive Hydrogen Frequency Standard
- **Frequency accuracy:** \(\pm 5 \times 10^{-13} \) (for any +/−2.5°C in +5 to +40°C)
- **Frequency corrector:** Resolution 1x10^{-15} Returning range 1x10^{-10}
- **Frequency stability:**
 - 1 sec.: 7x10^{-13}
 - 10 sec.: 3x10^{-13}
 - 100 sec.: 7x10^{-14}
 - 3600 sec.: 2x10^{-14}
- **Magnetic sensitiveness:** < 2x10^{-14} (1/Oersted)
- **Long term frequency drift less than 5 \(10^{-14} \) par month during the first 18 months of continuous operation
- **Temperature coefficient:** < 5x10^{-15} (1/°C)
- **Frequency reproducibility:** 1x10^{-13}

Environment:

- **Operational Temp.:** +5°C to +40°C
- **Storage Temp.:** 0°C to +50°C
- **Humidity:** < 80% (max 35°C)
- **EMC:** Meets ENS0081-1, ENS0082-1
- **Safety:** Meets EN61010-1 (1993)/A2(1995)
- **Expected lifetime:** 10-20 years

Output signals:

- 5 MHz / 10MHz / 100MHz, 1Vrms ± 0.2V, 50 ohms
- 2.048 MHz pulse, 2.5Vpp, 75 ohms (range 1.5-2.8Vpp)
- 1PPS, positive polarity TTL level, 50 ohms

Phase noise (at 5 MHz output) dB/Hz:

- 10 Hz : -115
- 100 Hz : -135
- 1000 Hz : -145
- 10000 Hz : -150

Control Monitoring and Warm up:

- Digital control and monitoring of all operating parameters on LCD display and keypad
- Warm up time: 8 hours

Electrical / Mechanical:

- **Voltage:** 220 VAC (100-240V) / 50-60 H and 27VDC (22-30V)
- **Power consumption:** max 80W
- **Internal batteries:** for 10 min. working time
- **Dimension:** 205x470x530 (HxWxD)
- **Weight:** 31 kg

Oscilloquartz SA reserves the right to change all specifications contained herein at any time without prior notice.