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The behavior of the atomic hydrogen maser is analyzed for both stationary and transient operation. 
An expression for noise in the signal from the maser oscillator is derived by applying the previously developed 
theory of Shimoda, Wang, and Townes. A variety of relaxation phenomena are analyzed, including effects 
of chemical reaction with the surface and magnetic field inhomogeneities. Several mechanisms leading to 
frequency shifts in the maser are also analyzed, including cavity pulling and the Doppler effect. 

I. INTRODUCTION 

MOST attempts to observe radiofrequency or 
microwave spectral lines with high precision 

incorporate one or more of the following features: (a) 
observation of the resonance over a relatively long 
period of time in order to obtain a narrow resonance 
line; (b) observation of a spectral line which is as pure 
as possible so that there is no broadening due to 
different components of the line or to the environment 
of the atom or molecule concerned; (c) a technique for 
eliminating, or at least greatly reducing, the first-order 
Doppler shift; and (d) a means for obtaining a favorable 
signal-to-noise ratio such as is provided in the low-
noise amplification which characterizes a maser oscil
lator. 

Although most high-precision radiofrequency and 
microwave experiments depend upon one or more of 
the above characteristics, none of them in the past has 
attained high quality in all of these features in a single 
method. Atomic beam hyperfine structure resonance 
experiments are excellent with regard to purity of the 
spectral line, but the atoms have only moderately long 
lifetimes. The original ammonia maser was excellent 
with regard to signal-to-noise ratio but had only a 
short lifetime and used a complicated spectral line. 
Solid state masers are good with respect to all the 
criteria except for broadening of the lines by the 
influence of neighboring atoms in the material. Optical 
pumping experiments with buffer gases are excellent in 
every point except for the effects of perturbations due 
to the frequent collisions of the radiating atoms with 
the atoms of the buffer gas. 

The hydrogen maser experiments described in the 
present paper originated in an effort to obtain a single 
device which was highly favorable in all of these 
features. Historically, the experiments were an out-
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FIG. 1. Schematic diagram of the hydrogen maser. 

growth of the previously described successive oscillatory 
field technique1 and of the atomic beam experiments 
with stored atoms.2-4 The hydrogen maser also incorpo
rates many of the features of beam maser developed by 
Townes and his associates.5,6 The experiments are also 
related to the buffer gas experiments of Dicke7 '8 and 
others although no buffer gas is used in the hydrogen 
maser. A preliminary report on the hydrogen maser 
has been published4 but no detailed analysis of its 
characteristics has been published previously. 

The hydrogen maser consists of the apparatus shown 
schematically in Fig. 1. Atomic hydrogen from a 
radiofrequency discharge in the source passes through 
the inhomogeneous state-selecting magnetic field from 
a 6-pole permanent magnet. This field focuses atoms 
in the [ ^ = 1 , m = Q~] and £F=1, w = l j states onto an 
aperture in a Teflon coated quartz bulb. The bulb is 
located in the center of a cylindrical radiofrequency 
cavity, operating in the JTEOII mode, which is tuned to 
the £F= 1, m = QT\ —» £ F = 0 , w = 0 ] hyperfine transition 
frequency at approximately 1420.405 Mc/sec. The 
atoms make random collisions with the Teflon coated 
bulb wall and eventually leave the bulb through the 
entrance aperture. Due to their small interaction with 
the Teflon surface the atoms are not seriously perturbed 
even though they are retained in the bulb for more than 
a second and undergo up to 105 collisions with the wall 
during the storage time. Under these conditions the 
resonance line is so sharp that self-excited maser 
oscillations at the hyperfine frequency can take place. 

The hydrogen maser has advantages in all of the 
desirable features listed above: (a) since the transition 
time is longer than one second the resonance line is 
narrow; (b) the hydrogen atom spends most of its time 

* Work supported by the National Science Foundation and 
the Joint Program of the Office of Naval Research and the 
Atomic Energy Commission. 

1 N. F. Ramsey, Rev. Sci. Instr. 28, 57 (1957); N. F. Ramsey, 
Molecular Beams (Oxford University Press, New York, 1956), 
p. 124. 

2 D. Kleppner, N. F. Ramsey, and P. Fjelstad, Phys. Rev. 
Letters, I, 232 (1958). 

3 H . M. Goldenberg, D. Kleppner, and N. F. Ramsey, Phys. 
Rev. 123, 530 (1961). 

4 H. M. Goldenberg, D. Kleppner, and N. F. Ramsey, Phys. 
Rev. Letters 5, 361 (1960). 

5 J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 
95, 282 (1954); N. G. Basov and A. M. Prokhorov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 27, 431 (1954). 

6 K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 
102, 1308 (1956). 

* R. H. Dicke, Phys. Rev. 89, 472 (1953). 
8 J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956). 

603 



604 K L E P P N E R , G O L D E N B E R G , A N D R A M S E Y 

F = 0-A 

m F =0 

FIG. 2. Energy levels of the 2S$ state of hydrogen. 

in free space where it has a simple unperturbed hyper-
fine spectrum and the effects of wall collisions are small 
due to the low electric polarizability; (c) the effect of 
the first-order Doppler shift is greatly reduced by the 
fact that the velocity of the atom in the bulb, when 
suitably averaged, is close to zero; and (d) the ability 
of the device to operate as a self-excited maser oscillator 
provides the advantages of low noise amplification 
which characterize masers. 

In the present paper the detailed theory and char
acteristics of the hydrogen maser are presented. Some 
preliminary experimental results have already been 
published4 and details of the apparatus9 and further 
results will be published subsequently. 

II. STATIONARY OSCILLATION 

Several authors have analyzed the behaviour of a 
two-level microwave beam maser.6'10,11 The treatment 
of the ammonia maser by Shimoda, Wang, and Townes6 

(SWT) is the most comprehensive and the discussion 
of this section follows their analysis where possible. 
The chief differences are: (a) the transition of interest 
here is magnetic dipole, rather than electric dipole; (b) 
the lifetime of the atoms is described by an exponential 
distribution function instead of being constant; and 
(c) effects of confinement of the radiating atoms by the 
storage bulb must now be considered. 

9 D. Kleppner, H. M. Goldenberg, and N. F. Ramsey, Applied 
Optics 1, 55 (1962). 

10 H. M. Goldenberg, thesis, Harvard University, 1960 (unpub
lished). 

11 J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 
99, 1264 (1955); R. P. Feynman, F. L. Vernon, and R. W. Hell-
warth, J. Appl. Phys. 28, 49 (1957); W. E. Lamb and J. C. 
Helmer, Stanford University Microwave Laboratory Technical 
Report No. ML-311 (unpublished). 

A. Preliminary Discussion 

The ground state of hydrogen in a magnetic field H0 is 
described by the Hamiltonian 

3Q, = hal- J—g/jUoJ-Ho ~gWo. I . Ho. (1) 

The energy levels are illustrated in Fig. 2. In the 
presence of an oscillating magnetic field which lies in the 
direction of the static field so that H = (HQ-{-BZ cosco/)k, 
the (F=l,mF=0) and ( F = 0 , mF=0) states are 
connected by the following matrix element: 

(0,013C11,0) = (1,01X10,0) = (gj-gi)hoBs cosco* 

^ —fxoHz coso)L (2) 

The wave function may be written 

*=ai*(0 ,0)+a 2 iKl ,0) . (3) 

If at time t—Q the atom is in the (F= 1, w ^ = 0 ) state, 
then it can be shown12 that at time t later 

ai(ty-
P :— exp -(a)-
L2 

•o)o)t 

a2(/) = exp —(co—coo)J 
L 2 JLr(a>-

J[(co-coo)2+x2]* 

Xsin{|[(co-co0)2+^2]^}, 

— (co — a>o) 
(4) 

[(a>-co0)2+<]* 

Xsin{i[(co-a>o)2+*2]^} 

+i cos{Ho)-o)o)2+x2Jt} 

where x= -poH,/h, coo=[pr(l ,0)«PT(0,0)]/*. 
The average power radiated by a beam of / atoms 

per second initially in the (1,0) state is 

AP=/*K |a i | 8 > a (5) 
(SWT use the symbol "w" instead of "J.") Here the 
average is over time spent in the cavity by the atoms. 
I t will be shown below that the probability that an 
atom ceases to radiate by leaving the bulb or by having 
its radiation state relaxed is described by a simple 
exponential distribution function, 

/ ( 0 = 7exp(-<y*), (6) 

in which case Eqs. (4) and (5) yield, after the indicated 
averaging, 

AP=hIhv-
y2+x2+(o)—coo)2 (7) 

In the hydrogen maser the atoms, on the average, 
make many traversals of the storage bulb before leaving 
the cavity. As will be shown in Sec. IV-E, if Bz is not 

12 N. F. Ramsey, Molecular Beams (Oxford University Press, 
New York, 1956), p. 119. 
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uniform throughout the storage bulb, we may replace 
x2 by 

(xy>= foo/WW, (8) 
where (He)b is averaged over the volume of the storage 
bulb. The energy stored in the resonant cavity is 

SwJv 
W=— / H2dV. 

SwJv 
(9) 

(H is the peak value of the oscillating magnetic field 
and the average is over the volume of the resonant 
cavity.) (Hz)b

2 is related to the stored energy by 
(H,)b* = (frrW/V)ri where 71 = (Hz)b

2/(H2)v. The value of 
7} is plotted in Fig. 3, as a function of a/1, the ratio of 
storage bulb radius to cavity diameter, for a TEQU 
cavity with length and diameter equal. Combining the 
above expression with Eq. (7) yields 

62 

l + 0 2 + S 2 

0 2 = (tf)/T»= W/WCJ WC= (A/MO) W / 8 7 H 7 , 

5 = (co—COO)/Y. 

(10) 

(11) 

The resonance curve is Lorentzian. The full resonance 
width at half-height, assuming 02<<Cl, is 

Acor=2y. (12) 

B. Threshold Flux 

For oscillation to occur, the power delivered to the 
cavity by the beam must equal the power dissipated in 
the cavity. The condition for this is 

QAP 1 Q S2 

W= = Ihv . 
co 2 co 1+02 

(13) 

Near the threshold of oscillation 0<C1, and from Eqs. 
(11) and (13), the minimum flux necessary for oscil
lation is 

Ith=±TrWc/Qh=hVy2/%TvWQTi. (14) 

As an example, if V= 104 cm3, 7 = 0.3 sec"1, <2 = 3X104, 
rj = 3, we have 7 th=1012 pps. With an incident beam 
I>Ith, the level of stored energy is given by 

W/Wc=P=(I/Ith)-l. (15) 

If the output coupling is represented by Qh then the 
output power is, using Eqs. (14) and (11), 

P o = = 1 . 
Qi \ / t h / 

(16) 

C. Effect of the Cavity Tuning on the 
Oscillator Frequency 

In order to analyze the effect of cavity tuning and 
noise in the maser, the oscillating dipole moment due 

FIG. 3. The functions v = (nz)
2/b(H2)v and /=<#2)6

2/#*2(max) 
= 0.047?7 for a storage bulb of radius a in a TE0n cavity with 
diameter and length equal to /. 

to the stored atoms is calculated in the presence of an 
assumed oscillatory magnetic field. The electromagnetic 
field generated by the oscillating magnetization is then 
calculated, and the assumed field is made consistent 
with the field produced. The effects of thermal noise 
are ignored in this section but will be considered below. 

The dipole moment operator is 

v(op) = gj/*oJ+gjM0I. (17) 

The oscillating dipole moment of an atom in the cavity 
at any time is 

(18) H= I ^*v(op)^rfr= (a2^a1+a^a2)fJLo, 

where gj has been approximated by 2 and gi by zero. 
(Vector notation has been omitted since the direction 
of the oscillating moment is parallel to the driving field, 
which is along the z axis.) When the perturbing field 
is Hz cosco/, the dipole moment of an atom at time t 
which entered the field at time to is, from Eqs. (4) and 
(18), 

X 

fJL(t~t0) = fxoeic"t-

X 

[ (co-co0 )2+x2 ]^ 

- s i n { [ ( c o - c o o ) 2 + * 2 ] K * - / o ) } 
.2 

(co—coo) 
sin2] [(co—coo)2+x2]*-

( * - ' o ) l 

[(co-co0)2+x2]^ { 2 

+complex conj.=/xVw*+/*tV^wf. (19) 

The oscillating magnetization M(r) , produced by the 
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atoms in the cavity, is given by Equation (25) becomes 

/ / 
M (r) = p, (r) [/z V*«+pt V™«]. (20) 

7^& 7^6 

The bar denotes an average over (t—to), the time spent 
in the cavity. The probability that an atom has spent 
a time (t—to) in the cavity is y exp[—y(t—to)~]. When 
the average is carried out, Eqs. (19) and (20) yield, 
assuming co—CO0<<OK. 

M(r) = 
I Ho # [ A + ^ Y ] 

2 7 F & 7 2 + * 2 + (co-coo)2 
*+cc. (21) 

The magnetic field H generated by the oscillating 
magnetization can be calculated in the following 
fashion: I t is assumed that the magnetization is so 
small that it does not seriously perturb the normal mode 
of the cavity, or the distribution of field in that mode 
H n . In this case the quality factor of the cavity con
taining the oscillating magnetization Qm can be calcu
lated from a result given by Slater13 for a cavity 
containing a microwave current. 

1 co-coc 1 / M t ( r ) - H w t * ( r ) J 7 
2i = — H i r i . (22) 

Qm coc Q / H t ( r ) - H „ t * ( r ) J F 

Here coc/27r is the resonant frequency and Q is the 
loaded quality factor of the cavity without stored 
atoms, while the frequency of oscillation is co/27r. Both 
the field and magnetization are expressed here in 
complex vector notation: H cosco/= J (He i a 5 ' +He~^) 
= # V " ' + # t V - ^ , and M = M*eiat+M**(Tiut. 

After some manipulation Eq. (22) can be rewritten, 
with the aid of Eq. (21), 

1 co—coc 1 Sir2 iJLo2Ir]\ 
2i =— \ -{ 

Qm coc Q hyV 

X+iy r A-B7 

l_72+#2+ (co c)2J 
(23) 

For oscillation to occur Qm= °°, and Eq. (23) becomes, 
using Eq. (14), 

l+2i-
(co—coc) IyT 7—i(co—coo) 

—Q=—\ 
I thL7 2 +^ 2 + (co—coo)2 1 (24) 

If co—coo, and co—co0<&, the real part of Eq. (24) gives 
Eq. (15), while the imaginary part can be written 

/coc—coo\ 
co—coo=2( jQy. 

\ coo / 
(25) 

If we define the quality factor of the resonance line by 

&=co0/Acor-co0/(27). (26) 
13 J. C. Slater, Revs. Modern Phys. 18, 441 (1946). 

co—coo (coc—coo) Q 
(27) 

coo coo 

This is a familiar result. In the case of the conventional 
beam maser, the expression on the right is multiplied 
by a slowly varying function of the power radiated. 
When the lifetime of the atom is described by an 
exponential distribution function, however, cavity 
pulling is independent of the power level. 

D. The Effect of Thermal Noise on 
the Oscillation 

In order to calculate accurately the effect of thermal 
noise on the maser it is necessary to take into account 
the amplification of the noise by the maser itself. This 
is done by a perturbation method in which the thermal 
noise field in the cavity Hn(t) is assumed to be small 
compared to the field Flo produced by coherent radiation 
of the atoms. Details of this procedure are discussed in 
SWT, and only an outline of the calculation is given 
here. 

The oscillating field in the cavity is assumed to be 
of the form 

Hz=Hz0 cosut+Bn(t). (28) 
Let 

x=HzofM0/h, xn(t) = 2Hn(t)no/h. (29) 

The quantity xn may be written 

xn(t) = 2xn
f cosco/— 2xn" sinco/, (30) 

where xn
f and functions of time defined by the 

equation. Equation (28) becomes, assuming xn
f and 

much less than x, 

Hg=hfJ,(T1(x-{-Xn) COs(o)t+Xn'/x), (31) 

which shows that xn' represents amplitude modulation 
and x^' represents phase modulation. 

The effect of the noise is to induce a fluctuating 
oscillating dipole moment. The total oscillating moment 
can be written 

M = /*sV
w'+/x J (£)+complex conjugate. (32) 

The first term represents the contribution of the 
atoms with no noise present, and the second term 
represents the contribution due to the noise. 

I t is shown in SWT that 

Ms
f = | ^ o sinatf, 

MnKO^-W^' 

(33) 

Xn"(t) CO${x(t'-h)}dt' 

-icos{x(t'-to)} I Xn(t')dtr . (34) 
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The field which would be present in the cavity due 
to noise with no atoms present may be written 

h0(t) = hjei(»t+hj*e-i»t, (35) 

hj = 2HT1 (£»' ( 0 + « » " (0) = 2 / r 1 ^ (0 • (36) 

%n if) and £w" (t) are derived from the spectral density 
in the cavity in the absence of the beam. In the following 
steps Xn and Jvfi cure found in terms of £ / and fw", 

respectively, thereby giving the actual values for 
amplitude and frequency modulation in the oscillating 
maser. 

For present purposes we need an equation similar to 
Eq. (24) but in which the dependence on the oscillating 
field is made explicit. This is obtained from Eq. (22) by 
using the value of M(r) given by Eq. (20), assuming 
Qm=0 and Q(co—coe)/coc<3Cl. If we solve the resultant 
equation for the field, we obtain 

HJ=-i / e~y^^^(t-k)dto+hnl (37) 
V J^o 

The first term on the right-hand side represents the 
field due to the oscillating magnetization, while the 
second term represents the thermal noise present with 
no magnetization. Using Eqs. (28), (33), (34), and 
(36), one obtains 

x xj £J" 47r2/Q^o2r 

2 2 2 Vh J —oo 

;-«>> sm(x(l-t0))dt0 

+i <rv«-to)\ Xn"(i') cosxtf-to)dt' 

—i cos(x(l—to)) I %n'dtf \dto (38) 

The first integral yields the same result as found in 
Sec. II-B. The other terms represent the effect of noise 
and can be written 

Xn 

2 

r»t 
( l+0 ?)7 2 / <ry(*-«o) cos(x(t-to)) 

cos(x(t-to))xn"(t')dt' \dto, (39) Xfxn'(t')dt' + if 
./ to J to 

where we have made use of the identity 

Sw2QIvu0
2/Vh=Iy2/Ith- ( 1 + 0 2 ) T 2 -

The real part of Eq. (39) can be solved for the case of 
noise components which lie within the resonance line-
width. With this restriction, xn'(t) may be considered 
constant, and the result is 

This result illustrates how the nonlinear properties 
of the maser oscillator tend to limit amplitude fluctu
ations, a familiar property of oscillators. As the oscil
lation level increases, the fractional amplitude fluctu
ation is suppressed. The fractional amplitude modu
lation, xn'/x=%n(l+92)/(2yOs), approaches zero with 
increasing radiated power. 

In order to find the relation between xn" and gn" 
the time dependence of xn" must not be neglected. The 
reason for this that xn

n represents a phase fluctuation 
which approaches infinity as time increases. The 
quantity of physical interest is the frequency fluctu
ation, and to determine this it is necessary to know 
how the phase xn

,f/x increases in time. To do this we 
consider the spectral densities of fn" and xn". If df 
represents a frequency bandwidth differing from the 
oscillator frequency by / , we may write 

*»"(*) = *»"(/) cos(2irft+8)df, (41) 

Vn \}) — / Xn 

Jo 
(/) cos(2x//+5'W, (42) 

where 8 and 5' are phase angles, to be determined. 
With these substitutions, the imaginary part of Eq. 
(39) becomes 

xn"(J) cos(2Tft+8')-{»"(/) cos(2x/*+8) 

= ( 1 + 0 V f «rrf*-» f *„"( / ) cos(2Trft'+8) 
J —oo J to 

X cos (x (f—to) dt'dh. (43) 

The result of Eq. (43) is 

5-8' = T/2. (44) 
and 

*»"<J)=t«"U)—. 
2irf 

I t is shown in SWT that 

<?n2(/))av kTdf 

so that 
UQW/Q 

QkT/ 7 \2 r/max df 

COOW\2T/ J'™» f2' 
(45) 

(( ) here represents the time average.) 
Both / m a x and / m i n must be less than the linewidth 

in order for the approximation in ^(t) to be valid. The 
lower limit is determined by the observation time. If 
the phase is observed for time t, then the smallest 
frequency fluctuation observable is /min=^l/(2/). 

Assuming that /max»/min, i.e., that the observation 
time is large compared to 2/Acor, Eq. (45) becomes 

2xn'=£n'(l+62)/d2. (40) (x"*)/** = QkTyH/ (2<K2U,W) . (46) 
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The fractional rms frequency fluctuation is therefore 

(Aco2)* (xm)* Ao>r /QkT\* 

o>o octcoo 2V27ra)o\oJo^/ 

0.113/ QkTyl 0 .113 /* r \* 
= [^— ) - = - ( — ) • (47) 

Qi \aoWctJ 0 Qi \PtJ 

In the last expression, P represents the power delivered 
by the beam to the cavity. For example, if Qi=2X10Q, 
P = 4 X 1 0 ~ 5 erg/sec, t=l sec, <Aco2)yco0=1.5X10-15. 

III. TRANSIENT OPERATION 

The radiation lifetime of atoms in the cavity y~l 

can be found in principle from the response of the maser 
to an applied signal when it is operated below oscillation 
threshold as a spectrometer. This method involves 
sweeping the frequency of a local signal generator 
across the resonance curve and detecting the power 
emitted by stimulated emission. In practice it presents 
several difficulties. The most serious of these is the 
necessity for controlling the power level of the signal 
generator in order to avoid power broadening of the 
resonance line. Spurious pickup in the detecting system 
can be a source of difficulty with the low power levels 
involved. Achieving the necessary frequency stability 
in the signal generator can be another serious source of 
difficulty. All of these problems are avoided by a 
transient technique which allows direct measurement 
of the radiation lifetime. 

The atoms can be put in a radiative state by a short 
pulse of power at the resonance frequency applied to 
the cavity when the density of atoms is insufficient to 
cause oscillation. A signal at the resonance frequency 
is then generated in the cavity by the atoms and, as is 
shown below, if the system is sufficiently below the 
threshold of oscillation, the amplitude of the signal 
decreases with decay constant characterizing the life
time. The effect is similar in principle to free precession 
in NMR. Since the transition of interest is a hyperfine 
transition, however, it is not correct to picture it in 
terms of a simple magnetic moment which undergoes 
a 90° pulse. Furthermore, since the radiation level is 
determined by stimulated emission, the term "free 
precession" is really a misnomer. For these reasons, the 
dynamical behavior of the system will be described in 
some detail. 

I t is assumed that the beam flux is well below the 
level necessary for oscillation. A pulse of rf is applied 
for a time T<<0y_1. The frequency up is such that 
|cop—coo| <#i , where the amplitude of the pulse Hp is 
related to x\ by Xi=fjLoHp/h. At the end of the pulse 
the amplitude of the lower energy state is, from Eqs. 
( l ) a n d ( 4 ) , 

a i = sin ( |# IT). 
At a time / later, 

ai(t) = sin[s(xiT+xt)li. 

The rate at which an atom radiates energy is 

d 
AP=hv—(ai(t)2) = %hvx sm(xiT+xt). (48) 

(In this last step it must be remembered that if x is a 
slowly carrying function of time then xt is to be inter
preted as JolxdL) If the energy level in the cavity is 
so low that xt<£\ for all time less than 7_1 , then the 
atom radiates at a maximum rate when XIT=TT/2. 
Since T^CY - 1 , the total number of atoms initially in this 
state is approximately Iy~l, and at time t the number 
of radiating atoms is Iy~1e~'Yt. The power radiated at 
time t is, therefore, 

AP = ^Ihvy~lxe-yt. (49) 

The energy in the cavity obeys the following equation 

dW/dt=AP-<aW/Q. (50) 

Using Eq. (11), this leads to 

d Ihvd co02 

- 0 2 = e-yt . (51) 
dt 2WC Q 

The solution to this equation, assuming to/Q^>2y, is 

w IhQ 
6= erw/(2Q> H e~^. (52) 

2yr 4:TWC 

The first term, which corresponds to decay of the 
stimulating pulse due to losses in the cavity, quickly 
becomes negligible compared to the second. After this 
time the field intensity decreases with the decay 
constant y. The energy in the cavity decreases at twice 
this rate. If the maser is monitored with a linear 
detector, however, the observed signal is proportional 
to the field intensity, and therefore yields a direct 
measure of the lifetime of the atoms. 

Near threshold, the above analysis does not hold due 
to the nonuniform fashion in which the atoms radiate 
when xt^l, and due to the necessity of taking into 
account the effect of atoms which enter the cavity 
after the pulse is over. The behavior of the system in 
this region has been analyzed,10,14 but the results are 
not experimentally as useful due to the complexity of 
interpretation in the present case. 

IV. RELAXATION PROCESSES 

A variety of processes can limit the radiative lifetime 
of an atom in the storage bulb. Most of the processes 
are random and lead to time independent relaxation 
rates, so that the total relaxation rate is the sum of the 
rates for each process. Because of this it is possible to 
analyze the relaxation processes separately, with the 

14 R. H. Dicke, Phys. Rev. 93, 99 (1953); R. H. Dicke and 
R. H. Romer, Rev. Sci. Instr. 26, 915 (1955); S. Bloom, J. Appl. 
Phys. 27, 785 (1956). 

file:///aoWctJ
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understanding that the individual rates are to be added 
to obtain the tota1 rate. 

In the case of nuclear magnetic resonance, the 
dynamical equations of the magnetization are often 
described by the Bloch equations in terms of the 
relaxation times Ti and T2, the time constants which 
describe the return of magnetization in a given direction 
to its equilibrium value, and the decay of the oscillating 
dipole moment, respectively. These are not used in the 
present analysis because the Bloch equations do not 
apply due to the presence of hyperfine structure. I t is 
important to remember, however, that a given pertur
bation frequently causes relaxation by both changing 
the magnetization along the axis of quantization and 
by causing loss of coherence between the oscillating 
moment and the rf field, and that these two rates may 
be considerably different. To emphasize this, the 
subscripts 1 and 2 will be used to identify decay rates 
due to each of these processes, respectively. 

A. Escape from the Bulb 

The escape rate of atoms from the bulb 70 is found 
by equating the incident beam flux / with the emergent 
flux, NvAe/4£, where N is the density, v is the mean 
velocity, Ae is the total escape area, and K is a numer
ical factor depending on the geometry of the first 
aperture. For a thin hole, K=l. If the volume of the 
storage bulb is F&, then N=I/(yoVb), and 

yo=vAJ(4KVh). (53) 

As an example, for hydrogen at room temperature, 
£ = 3 X 1 0 5 cm/sec, and for a spherical bulb 16 cm in 
diameter with a thin exit aperture 2 mm in diameter, 
70= 1 sec -1. 

B. Effect of Wall Collisions 

Wall collisions fall conveniently into two categories: 
adiabatic and nonadiabatic. During an adiabatic colli
sion no transitions of the atom between its states are 
induced but a small change in the spacing of the energy 
levels usually occurs. This eventually leads to a loss of 
coherence with the applied rf field due to randomness 
of the perturbations. In a nonadiabatic collision, the 
atom is effectively lost as far as further contributions 
to the radiation field are concerned due to a transition 
to some other state or to a chemical reaction with the 
surface. In this case, relaxation occurs during a single 
collision. The mean number of collisions an atom 
undergoes is then inversely proportional to the proba
bility that a single collision is nonadiabatic. 

1. Adiabatic Collisions 

A convenient parameter in describing an adiabatic 
collision is the phase shift per collision 

r 8W(lfi)-8W(Ofi) 
<P= / dL (54) 

J ft 

The integration is over the time of one collision, and 
8W is the difference in energy of a given state between 
the free space value and the value when surface forces 
are present. I t is shown in reference 3 that the atom 
loses coherence after a number of collisions 

n~2/<p\ (55) 

This result was derived for a somewhat different 
situation from the present. In particular, it was assumed 
that there is no rf field present and that the adsorbtion 
energy is large compared with kT, so that the adsorb tion 
time is described by an exponential distribution 
function. Nevertheless, since the result is fundamentally 
due to the random nature of the perturbation, it is 
quite general and can be applied to the present case. 
(For example, it can be shown that the dispersion in <p 
is changed only slightly when the adsorb tion energy 
becomes less than kT, due to the relatively high 
dispersion in velocity and direction of the colliding 
atom.) If the collision rate is v/l then from Eq. (55) 
it follows that the relaxation rate is given by 

7 . = i ( * / 0 ¥ * (56) 

This type of relaxation process does not strictly lead 
to a Lorentzian resonance line. However, in the case 
where this is not the dominating process the line is 
approximately Lorentzian and the decay rate is still a 
useful parameter for describing the linewidth. An 
example of a case where this leads to a non-Lorentzian 
line is given in reference 3. 

The phase shift <p is related to the frequency shift, 
as discussed below. For the case of hydrocarbon-like 
surfaces an upper limit to (p is10 <p<10~4 rad/col, 
leading to a value of 7S<10~4 sec-1. 

2. Nonadiabatic Collisions: Chemical Reaction 
with the Surface 

If there are no strong adsorbtion forces present, then 
physical adsorbtion does not by itself limit the radiative 
lifetime. Chemical reaction between the atom and the 
surface can occur, however, and this leads to a decay 
rate 7S which is the probability per unit time that an 
atom undergoes such a reaction. This is found in the 
following manner: In order for a reaction to take place 
the incident atom must possess kinetic energy equal to 
Ea, the activation energy for that reaction. Departures 
of the atom from thermal equilibrium are usually 
negligible, so that the energy distribution may be found 
from a Maxwell-Boltzmann velocity distribution char
acterized by the temperature of the storage bulb. The 
probability that a particular collision leads to chemical 
reaction is obtained by finding the probability that the 
energy available for the reaction exceeds Ea. With the 
neglect of the difference between collisions of hydrogen 
with the same molecule when it is in the gas phase or 
on the surface, the following result for the rate r with 
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which the atoms hit the surface with an energy greater 
than Ea may be derived by well-known procedure15 

r= (2V/TTH) exp(-Ea/kT), (57) 

v is the rms velocity (SkT/m)^, and / is the mean 
distance between collisions. For a sphere, I is two-thirds 
the diameter. The temperature T is that of the storage 
bulb. The reaction rate differs from r by the steric 
factor16 P which is introduced because not every 
collision satisfying the energy requirement leads to a 
reaction. The relaxation rate is therefore 

yr= (2VP/TTH) exv(-Ea/kT). (58) 

Both Ea and P are difficult to estimate accurately for 
a surface collision. For reactions in the gas phase, P is 
usually taken to be 0.1, although it can be much smaller. 
Since a surface collision may involve interaction with 
several of the surface molecules, P is probably larger 
than for a similar collision in the gas phase. A particular 
example of a possible surface reaction is the case of 
surface combination which occurs when atomic hydro
gen reacts with a methyl group which is part of a 
hydrocarbon surface. An example of this is H + C H 3 - ^ 
H 2 + CH2 where it is understood that the methyl group 
is bonded to a larger molecule. To estimate the acti
vation energy for this reaction, one may consider a 
similar reaction which has been observed in the gas 
phase, H+C 2 H 6 —>H 2 +C 2 H 5 . The activation energy 
for this is 6.4 kcal/mole (0.27 ev),17 with a steric factor 
of about 5X10 - 3 . The activation energy for reactions 
involving hydrogen recombining with other paraffin 
hydrocarbons does not vary markedly from this value 
with the size of the molecule, so that it is a reasonable 
value to use for the present case. When it is substituted 
into Eq. (58), and assuming P = l , the result for a 
16-cm-diam bulb at room temperature is 7 = 0.7 sec-1. 
This is in approximate agreement with experimental 
observations which will be described in a later paper. 
The activation energy for corresponding reactions with 
flurocarbon is considerably higher than for the hydro
carbons, and the decay rate with a Teflon surface has 
been found to be considerably smaller than possible 
with a hydrocarbon surface. 

C. Effect of Magnetic Field Inhomogeneities 

A nonuniform static magnetic field in the storage 
bulb can cause relaxation in two ways. The atoms 
experience a time-varying field by virtue of their 
motion through the bulb, and this can induce Zeeman 
transitions analogous to the Majorana transitions of 
atomic beams. In addition, since the resonance fre
quency is slightly field dependent, and because different 

15 R. Fowler and E. A. Guggenheim, Statistical Thermodynamics 
(Cambridge University Press, London, 1956), Chap. XII. 

16 E. W. R. Steacie, Atomic and Free Radical Reactions (Reinhold 
Publishing Corporation, New York, 1954), p. 490. 

17 M. R. BerUe and D, J. LeRoy, Discussions Faraday Soc. 14, 
50 (1953), 

atoms have different histories in the bulb, due to the 
random nature of their paths, there is eventually a loss 
of coherence of the oscillating moment. The relaxation 
rates due to these processes will be designated ym 
and 7#2, respectively. 

1. Relaxation Rate yni 

The effect of the inhomogeneities on the Zeeman 
states (F= 1, W F = 1, 0, — 1) is most easily analyzed by 
neglecting the (F=0) state, and considering a spin 1 
system in the presence of a random perturbation. 
Transitions are induced among the states at a rate W, 
and the decay rate for an atom from the state of 
interest, (F=l, w = 0 ) , is yHi = Wilo+W^ilo. The sub
scripts denote nip. I t should be noted that y#i does 
not correspond to Tr1, since the quantity of interest 
is the rate of decay of an atom from a given state, not 
the rate of decay of magnetization. In the latter case, 
for a spin \ particle, the rate is twice as great. 

The transition rate between two states, a and (3, due 
to a random perturbation 3Q,i(t) = AF (t), where A is 
one operator and F(t) is a random function, is18 

Wafi=lir*\(a\A\0)\U(<*afi), (59) 

J(coap) is the spectral density of ([^(^)]2)av and is given 
by the Fourier transform of the autocorrelation function 
of F(t). The interaction Hamiltonian is 

3 C = - 7 F * F - H ( / ) . (60) 

To a good approximation the components of the 
inhomogeneous magnetic field vary independently, so 
that H(t)=Hx(t), Hy(t), Hz(t). When this is substituted 
in Eqs. (60) and (59) we have 

^ 1 . 0 = ^ - 1 . 0 = ^ / ( 0 , ) , (61) 

/(*>)=/ [ (#*«+#,( / ) ] 

~°° X[^(/+r)+^(/+r)>--^. (62) 

The cross products in the above equation vanish 
because Hx(t) and Hy(t) are independent and have 
zero average, so that (Bx

2)^=(Hy
2)av=i(Ht

2)^. The 
autocorrelation function of Bh the transverse field, is 
g(r) = (Ht(r)Ht(t+T))7 and the result is 

/.+00 

7 m = Wlt0+W-i,o=yF
2 / g(r)e~io}Tdr, (63) 

J —CO 

The integral in this equation, the spectral density of 
(Ht

2)av at the transition frequency, is a complicated 
function of the storage bulb geometry, velocity distri
bution, and magnetic field. The mean time between 
collisions to naturally presents itself as a sort of corre
lation time, since the motion of the atom is altered 

18 A. Abragam, The Principles of Nuclear Magnetism (Oxford 
University Press, London, 1961), p. 270. 
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violently and nearly randomly on each wall collision, 
and in spite of the complexity of g(r) it is possible to 
obtain approximate expression for the spectral density 
in the cases when co is either much less or much greater 
than £o-1. 

In the limit of low magnetic fields co = yFHo<^to~1 and 
the wall collision occurs rapidly with respect to or1. 
In this case the atoms experience a field which assumes 
a new value after every collision, and if the wall 
collisions occur perfectly randomly in time, then19 

g{r) = (Ht
2)^e~^\ (64) 

where the average of {H2)^ is over either time or space. 
In this limit, we find 

Vm^to-1) = 2yF\H?)a*- (65) 

This expression is not valid when u>fo~l for the 
following reason20: the assumption that the field changes 
discontinuously is not valid even in the low field case, 
although it introduces no appreciable error there since 
the relatively large intensity high-frequency compo
nents led to by this model have no effect when the 
resonance is at a low frequency. In the present case, 
however, the transitions are sensitive to the high-
frequency components. Actually, the field is not discon
tinuous in time, since the atom does not alter position 
instantaneously, but its time derivative is discontinuous 
as long as the wall collision takes place in a time small 
compared to or1. I t can be shown that this causes the 
spectral density to fall off as co~A. Since the discon
tinuities in dH/dt occur at a surface collision, the 
spectral density is now sensitive only to the average 
field inhomogeneity at the surface, rather than the 
average throughout the bulb. Because of this it is 
necessary to assume a certain field configuration in 
order to estimate 7(co). The relaxation rate has been 
derived by Purcell20 for the simplest type of sym
metrical field inhomogeneity, where the inhomogeneous 
field is given in cylindrical coordinates by Hp=2hpz/d2 

-Hz= (h/a2)(p2-2z2). The result is 

h 
7Hi=hF2h2 . (66) 

l+(co/0/2)4 

As an example, in the low field region where cô o<3Cl, 
then the factor (w^o/2)4 may be neglected and using 
7 i r=1 .4Xl0 6 cps/oe, / 0 =3X10~ 5 sec, the result is 
Y in=3X 107Ht

2, so that for Ht= 10~4 oe, ym=0.3 sec"1. 
This process leads to a non-Lorentzian line shape 

since it affects only the upper of the two resonance 
states. In the case where it is the dominating mecha
nism, the line shape does become Lorentzian, much as 
an ideal optical transition has a Lorentzian line shape 
even though the upper state has a very large decay rate 

19 W. B. Davenport and W. L. Root, An Introduction to the 
Theory of Random Signals and Noise (McGraw-Hill Book Com
pany, Inc., New York, 1958), p. 103. 

20 E. M. Purcell (private communication). 

and the lower state has a decay rate of zero. If there 
are several competing processes the situation is quite 
complicated, although it can be solved if the total 
decay rate for each of the states is known.21 

2. Relaxation Rate jH2 

The same comments regarding the line shape that 
were made in Sec. IV B (1) apply to phase decorrelation 
due to random motion through an inhomogeneous field. 
A simple method with which to obtain an estimate of 
jH2 is to assume that the field has a separate value on 
either half of the storage bulb, H^AH/2. Since field 
dependence of (F= 1, W F = 0 ) —> ( ^ = 0 , mF=0) is given 
by v=VQ-\-aH2, where a=2750 cps/oe2, the resonance 
frequencies on either side of the bulb then differ by 
2aHoAH, assuming AH<£MQ. If the mean number of 
collisions an atom makes before leaving is n, then the 
mean time an atom spends in one half of the bulb, in 
excess of the other half, is 2n%y and for coherence it is 
necessary to have 2nHo(2aH0AH) < 1 . Therefore, 

7H2= l/nh=to(16a2Ho2AH2). (67) 

If, for example, Ho=10~2 oe, A i?=10 - 3 oe parallel to 
Ho, then with k=3X 10~6 sec, we have Y ^ ^ I O - 6 sec -1. 

If the transitions of interest are ( ^ = 1 , W F = ± 1 ) —> 
(F=0, Wj?=0), the IT transitions, then there is a first-
order field dependence, v=vod£&B, where 0=1.4X1O6 

cps/oe, and it follows that 

7HI(T) = 4P2AH%. (68) 

With the same field as above, yHi(ir) = 24:0 sec -1. On 
the other hand, if the field varies due to inhomogeneities 
which are only perpendicular to the axis, then an 
inhomogeneity of 10~3 oe in the same field as above 
yields Yjn(7r) = 0.6 sec -1. 

D. Spin Exchange Relaxation 

At sufficiently high density of atomic hydrogen the 
dominating relaxation process is due to hydrogen-
hydrogen collisions. The mechanism which leads to 
relaxation is chiefly spin exchange in which the electron 
spins of the colliding atoms exchange, leaving the atoms 
in hyperfine states different from the initial states. 
Wittke and Dicke8 have analyzed this process, and their 
results have recently been confirmed by a detailed 
analysis of Mazo.22 Measurements of the spin exchange 
cross section have been made in an E P R experiment 
by Hildebrandt, Booth, and Barth23 and there is 
generally good agreement between theoretical and 
experimental results. The decay rate for spin exchange 
collisions 7 s e is related to the number of hydrogen atoms 
per cm3, N, by 

7se=5 X 10-1(W sec -1. (69) 
21 P. Kusch and V. W. Hughes, Handbuch der Physik, XXXVII/ 

1 (Springer-Verlag, Berlin, Germany, 1959), p. 7. 
22 R. M. Mazo, J. Chem. Phys. 34, 169 (1961). 
23 A. F. Hildebrandt, F. B. Booth, and C. H. Barth, Jr., L 

Chem. Phys. 31, 273 (1959). 
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This expression, which is valid for EPR, should be 
slightly modified for the hydrogen maser since in the 
latter there is initially a nonequilibrium distribution of 
states. On the other hand, this introduces only a minor 
change in yse, and Eq. 69 is still correct for an approxi
mate estimate. 

E. First-Order Doppler Broadening 

So far the effect of the Doppler shift on the shape of 
the resonance has been neglected. This might seem to 
be a poor approximation since the normal Doppler 
broadening of the hyperfine line for a free hydrogen 
atom moving with thermal velocities is over 10 kc/sec, 
more than 104 times the resonance width of interest in 
the hydrogen maser. Doppler broadening does not, in 
fact, contribute appreciably to the linewidth due to the 
confinement of the radiating atoms to a region of 
constant phase and only slightly varying field ampli
tude. The possibility of inhibiting Doppler broadening 
in paramagnetic resonance experiments by limiting the 
motion of radiating atoms was first pointed out by 
Dicke who has analyzed the case of a radiating atom 
moving diffusively through a region of varying phase.7,8 

The present situation differs in that the atoms are 
confined to a region of almost constant phase and 
varying field amplitude, and their motion is random 
within a confined volume, rather than diffusive. For 
these reasons, a brief analysis of the effect of the 
atoms' motion is given. 

The situation can be visualized classically. The 
resonance curve for the system when the atoms are 
assumed to be at rest, Eq. (7), corresponds to the 
spectrum of an ensemble of damped harmonic oscil
lators. If the resonance is not appreciably saturated, 
i.e., if %<&y, then the transition probability, i.e., the 
intensity of the resonance, is proportional to the 
driving oscillating magnetic field intensity x2, so that 
the field radiated by each member of the fictitious 
ensemble is proportional to the local driving field. In 
the most general case the amplitude and phase of the 
local driving field vary with position in space. This 
causes the atoms to experience random amplitude and 
phase fluctuations due to their random motion. In the 
present case the atoms are confined in a resonant cavity 
in a region of almost constant phase where the ampli
tude varies according to the field distribution of the 
mode. The quantity of interest is the spectral density 
of the radiated power P(co). P(co) is the Fourier trans
form of the autocorrelation function of x(t), G{r) 
= (x(t)x(t+r)). If the oscillators were randomly distri
buted throughout the bulb, but were at rest, then 
x (t+ r)~x (t) exp (—T | r | ) . (The exponential term ex
presses the fact that we are dealing with damped 
oscillation.) In this case 

G(r) = < ^ e x p ( - 7 k | ) . (70) 

The average is over the volume of the storage bulb. 

The atoms actually move rapidly, making on the 
average more than 104 collisions before leaving the bulb. 
All correlation between positions at successive times 
is lost after a few wall collisions, and for r greater than 
the time for a few collisions x{t-\-r) is independent of t, 
except for the damping factor. In this case, we have 
approximately 

G(r) = <*> 6
2 exp( -7 | r | ) . (71) 

The effect of motion is to reduce the power radiated at 
the center of the resonance line. This may be seen by 
evaluating the ratio of the spectral density at the center 
of the resonance curve for the two cases 

P(0) moving (x)b
2 (Hz)b

2 

= = . (72) 
P(0) res t (x2)b {H2)b 

The area lost from the center of the spectrum appears 
in a broad pedestal having the full Doppler width, 
A=v/\. The spectrum is approximately 

1 A 1 
P(u) = (x)2 + -«* 2 >-<x) 2 ) . (73) 

Y2+a>2 7 A2+a>2 

For a bulb located at a field maximum, ({x2)—{x)2)/(x)2 

is typically ro(a/\)2, where it is assumed that the 
radius of the bulb, a, is small compared to X, the 
cavity wavelength X (2TT)~1. Since y ~ v/na, where n is 
the mean number of collisions, the ratio of the second 
to first terms of Eq. (73) for o> = 0 is approximately 
a/(10nty. Consequently the contribution of the broad
ened term is negligible to the spectrum at resonance, 
and it has negligible effect on the half-width of the 
spectrum. On the other hand, the motion of the atoms 
does have a significant effect on the intensity of the 
resonance. The loss of intensity at co = 0 is zero when 
the atoms are confined to a small volume at the region 
of maximum field, where {x)2=(x2) = xmaJ

i. For larger 
regions, the intensity is reduced by the factor / = (x)2/ 
x2(max). This is related to the function r\ defined 
earlier by 

f=(H2)vri/B2(m&x). (74) 

In the case of a cylindrical cavity operating in the 
TEQU mode, /=0.0474r?. Both / and r? are plotted in 
Fig. 3 for a spherical bulb of radius a in such a cavity, 
with length I. 

F. Second-Order Doppler Broadening 

Although broadening of the resonance by the first-
order Doppler shift has been shown to be negligible, 
the second-order Doppler shift must also be considered. 
I t is shown in Sec. VI-C that the total fractional shift 
of frequency due to the second-order Doppler effect at 
room temperature is approximately 10~10. The velocities 
of the atoms are described by a Maxwellian distribution, 
and if there were no thermalization with the walls the 
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resonance curve would be fractionally broadened by 
approximately the same amount as it is shifted. 
Thermalization does occur, however, and this reduces 
the effect. If the accommodation coefficient is p, and if 
the atoms make on the average n wall collisions, then 
the broadening effect is reduced by a factor approxi
mately (pn)K Assuming p=0.3, n = 3 X l 0 4 , correspond
ing to a storage time of 1 sec, the broadening of the 
resonance line due to second-order Doppler shift is 
only about 1% of the resonance width, and therefore 
can be neglected. 

G. Pressure Broadening 

At easily obtainable pressures, collisions with inert 
atoms or molecules have negligible effect on the line-
width. Relaxation due to the presence of an impurity 
gas at elevated pressure has been observed. For instance, 
the relaxation rate due to O2 has been found to be 
approximately 

Y = 2X107 sec-ymm Hg. 

This effect is larger than can be accounted for by 
magnetic interaction and has not been fully interpreted 
as yet. I t may be due to the formation of a short-lived 
excited molecule. 

V. FREQUENCY SHIFTS IN THE MASER 

Ideally the oscillation frequency of the maser is 
identical with the transition frequency between the 
levels of the atomic system as measured with atoms at 
rest in free space. The atoms are not free, though, since 
they interact with the surrounding electromagnetic 
system and, in the case of the present maser, with the 
walls of the storage bulb. In the following paragraphs 
some of the more important of the effects leading to a 
shift in frequency are discussed. 

A. Wall Shift 

The phase shift introduced in the wave function of 
an atom during a wall collision <p, defined in Eq. (54), 
causes a shift &o in the resonance frequency given by 

8ca/ca=<p/ (otfo), (75) 

where to is the mean time between collisions. I t is a 
difficult task to predict <p theoretically because of the 
uncertainty of the exact interaction potential and lack 
of knowledge of the microscopic wall structure. The 
experimental upper limit for <p for a surface treated 
with dimethyldichlorosilane is10 <p<10-4 rad, or, for a 
16-cm-diam bulb, 5co/co<10-9. A lower limit to the 
expected shift with such a surface can be obtained from 
the following argument: The treated surface has very 
low adsorptive properties largely because it simulates 
a saturated hydrocarbon. The adsorption energy of 
atomic hydrogen on such surfaces is smaller than kT, 
and as a result the sticking time on the surface is 

comparable to the simple collision time with a free 
molecule. In a surface collision the impinging hydrogen 
atoms encounter methyl groups which are tightly 
bound to silicon atoms composing the underlying 
silica matrix. Such a collision should be similar but 
somewhat more severe than that with a single hydrogen 
molecule. The phase shift for the latter collision can be 
obtained from the measured value of the shift in the 
hyperfme frequency of hydrogen due to collisions with 
molecular hydrogen gas. This has been determined by 
Pipkin and his co-workers24 and is —0.24 cps (mm Hg) - 1 . 
Assuming an effective H—H2 collision diameter of25 

2.9X10~~8 cm, the phase shift per collision is — 3.9X 10~3 

rad/collision. This leads to a fractional shift in the 
frequency of the maser of 5co/coo= — 1.3X10-13. The 
actual frequency shift with a saturated hydrocarbon 
surface should be higher than this value not only 
because the wall collision involves more than one 
perturbing molecule but because the small frequency 
shift in the molecular hydrogen buffer gas may be due 
to a partial cancellation of the dispersive attractive 
force effects by the effect of the exchange forces. The 
shift with a saturated flurocarbon surface, such as 
Teflon, may be smaller than the above value due to 
its relatively tight binding and small polarizability. 

Since the wrall shift is proportional to the collision 
rate, it can be determined by measuring the frequency 
of the maser as a function of the bulb size. This probably 
cannot be done with an accuracy of greater than 1% 
and the wall shift may therefore be the limiting factor 
in the absolute precision of the maser. Slow changes 
in the wall shift due to aging or contamination could 
cause long term fluctuations in the frequency. The 
answer to these problems can only be determined 
reliably by experiment. 

B. First-Order Doppler Shift 

The presence of running waves in the rf cavity can 
cause a shift in the resonance frequency due to the 
motion of the atoms. This occurs only if the atoms have 
a net effective translational velocity, as, for instance, 
if they enter one side of the bulb and relax before 
leaving through the entrance aperture. The situation 
is most easily described in terms of a running wave 
such as caused by the presence of a coupling loop placed 
asymmetrically in the cavity. (Effects of about the 
same size occur even if power is dissipated uniformly 
throughout the cavity walls due to generation of rf 
power within the storage bulb.) For the present, effects 
of saturation are neglected and an expression of the 
spectrum the atom experiences is derived by the same 
type of argument used in IV-E, to analyze the effect 
of Doppler broadening. 

24 L. W. Anderson, F. M. Pipkin, and J. C. Baird, Phys. Rev. 
Letters 4, 69 (1960). 

25 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wilev & Sons, Inc., New York, 
1954), p. 1082. 
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The rf field consists of a standing wave and a running 
wave and may be written 

H(t) = ±H0e i(uot-kz) + (^H0+H1)e
i<-'""+kz (76) 

Ho is the amplitude of the standing wave and Hi is 
that of the running wave. The spectral density /(co) is 
the Fourier transform of the autocorrelation function 
G(r), which is 

G(r) = (H(t)H*(t+T))„ 

= {iffo)2<exp[«(z-a ,)]>av 
+ (|i7o+i3 ri)2(exp[^(3-2 ,)])av 
+ (±H,+Hi)hH^[ik(z+z')-])^ 
+ ( i - # o + # i ) | # o 
X<exp[-«(2i+z ,)]>av} e x p [ - 7 | r | ] . (77) 

If r is large compared with to, the mean collision time, 
z and z', the position of the atom at time t and (t+r), 
respectively, are independent. Since /(co) is only of 
interest near the center of the spectrum, i.e., co—coo 
<C/o_1, the short time correlations can be neglected so 
that z and z' can be considered independent. 

To simplify the calculation, the variation of field 
transverse to the axis of the cavity is neglected, and 
the bulb, which has a radius a, is treated as if it were 
one dimensional. If the center of the bulb is located at 
the center of the rf cavity, z = 0 , then a uniform density 
of the atom in the bulb is described by the distribution 
function F(z) = l/2a. If the atoms enter the bulb at 
one end and are relaxed uniformly throughout the bulb, 
the distribution is no longer uniform. In this case the 
distribution is approximately 

P(z)=(l/2a)(l+z/na). (78) 

Here n is the mean number of collisions the atoms make 
before relaxing. If Eq. (78) is substituted in Eq. (77), 
the following result is obtained after some manipulation 

G(r) = 
sin2(ak) (sin2ak sm(ak) 

2 +2HoHA +i 
(ak)2 I 

l/cos(ka) sm(ka) 

x- -: 
n\ (ka) (ka)' 

(ak)2 (ak) 

(ka)\)-] 
exp[—icooT—y\r\2- (79) 

a)2 I J J 
The imaginary part of G(T) represents a frequency 

shift. This shift is obtained by evaluating /(co), the 
Fourier transform of Eq. (79), and finding the position 
of the maximum of /(co). Assuming ak<l, and using 
the relation HO/HI=2QT/TI, where QT is the coupling 
Q, one obtains 

co—coo 2a 1 
= . (80) 

coo Sin QTQI 

The length of the resonant cavity is I. 
As a numerical example, if n= 104, a/1 = 0.3, QT= 104, 

<2z=109, the result is (co-co0)/coo-2X10-18. This is 
clearly a negligible effect. 

A quantum mechanical treatment of this problem 
indicates that saturation does not appreciably affect 
this result, so that the first-order Doppler shift can be 
completely neglected as a source of frequency shift. 

C. Second-Order Doppler Effect 

The second-order Doppler effect does not average in 
the same manner as the first-order effect because of its 
dependence on the square of its velocity. The fractional 
shift introduced by this effect is 

co—coo 

coo 

1 v2 

2 c2' 

3kT 

2 mc2 
(81) 

where m is the mass of the atom, k is Boltzmann's 
constant, and T is the temperature. The fractional 
shift is seen to be the ratio of the thermal energy to 
the rest energy of the atom. For hydrogen its magnitude 
is (co-coo)/coo=-3X10-13/°K. The shift is three times 
smaller for tritium. 

D. Cavity Pulling 

The influence of the cavity tuning on the resonance 
has been discussed in Sec. II-C. I t was shown there 
that a mistuning of the cavity by an amount coc—co0 

shifts the frequency by an amount 

co—coo coc—o>oQc 
(27) 

coo coo 

where Qc is the quality factor of the cavity. For a ratio 
Qc/Qi of 10~6, and for a fractional shift no larger than 
10~13, the cavity must be tuned to approximately 100 
cps. For this reason the cavity must be accurately 
tuned, and either temperature controlled or thermally 
compensated to a high degree. 

E. Zeeman Effect 

The second-order magnetic field dependence of the 
(F= 1, m=0) —> (F=0, tn=Q) transition is given by 

v=v0+27S0H2cpsJ (82) 

where H is in oersted. The fractional shift in frequency 
due to AH, a small change in the field, is 

(v- *>o)/Vo=3.9X 10-&HAH. (83) 

A fractional shift of 10~13 requires # A # ^ 3 X 1 0 - 8 or, 
for example, a field of 1 moe held constant to 3 % . 
Although this represents a high degree of field stability, 
the use of the field dependent transitions in the maser 
to stabilize the magnetic field greatly simplifies the 
problem. 

F. Effect of Neighboring States 

The presence of atoms in other than (F=l,m=0) 
can cause a change in the permeability of the cavity 
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and thereby shift the resonance. The only states which 
make appreciable contributions to this are (F=l, 
m=l) and (F=l,m=l). The pulling effect of these 
states is very small, however, for the following reasons: 
Normally these states do not couple to the resonant 
mode because the static magnetic field is parallel, 
rather than perpendicular, to the oscillating field. In 
addition, the two states have effects of opposite sign, 
so that if care is taken to populate them equally they 
will have a negligible net effect even if the static 
magnetic field is not precisely parallel to the oscillating 
field. 

I. INTRODUCTION 

USING the first Born approximation, Gavrila1 calcu
lated the differential and total cross sections for 

the iT-shell photoefTect to two orders in aZ. I t is ap
parent from Gavrila's work that the aZ correction is 
significant even for fairly small values of Z. More 
recently Pratt2 made numerical calculations of the total 
cross section using the high-energy limit of the exact 
Coulomb wave function for the ejected electron. Prat t 
also derived an approximation formula which gives the 
total cross section as a function of Z. This formula 
compares favorably with the exact numerical results for 
all values of Z. 

In this paper, the differential cross section for the 
relativistic iT-shell photoeff ect is calculated by using the 
high-energy limit of the exact Coulomb wave function 
for the ejected electron. While this result is correct 
to three orders in aZ (i.e., to terms of relative order 
a2Z2), it is not a strict expansion in this parameter. We 
have used Pratt 's work as a guide to determine what 
factors should be left unexpanded. Upon integration 
over the solid angles of the outgoing electron we then 
obtain precisely Prat t 's approximate formula for the 

* Contribution No. 1085. Work was supported in part by the 
U. S. Atomic Energy Commission. 

1 M. Gavrila, Phys. Rev. 113, 514 (1959). 
2 R. H. Pratt, Phys. Rev. 117, 1017 (1960). 
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total cross section. One might then conjecture that our 
result would give an accurate approximate formula for 
the angular distribution. However, in the forward direc
tion the terms of relative order 1 and aZ vanish, and the 
resulting cross section is valid only to the first non-
vanishing order in aZ. This nonvanishing term makes a 
contribution of relative order a2Z2 to the total cross sec
tion. Since the terms of relative order a2Z2 make a very 
small contribution to Pratt 's expression for the total 
cross section, we cannot use a comparison with Prat t 's 
result for the total cross section to justify the validity of 
our differential cross section for electron ejection angles 
near the forward direction. Therefore, for this special 
case of photoelectrons emerging in the forward direction, 
we calculate the differential cross section correct to all 
orders in aZ. 

Figure 1 shows the angular distribution of the ejected 
photoelectrons. Figure 2 gives the differential cross 
section exact in aZ for the special case of forward emis
sion as a function of Z. 

II. MATRIX ELEMENT 

Neglecting radiative corrections, the matrix element 
for the photoeff ect is 

P H Y S I C A L R E V I E W V O L U M E 1 2 6 , N U M B E R 2 A P R I L 1 5 , 1 9 6 2 
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