Frequency Stability Measurement: Technologies, Trends, and Tricks

> Presented at Microwave Update 2010 John Miles, KE5FX

The importance of time

- Time is a wide-range parameter scales of interest range from femtoseconds to years!
 - Time is also the most *precise* physical quantity we know how to measure. Almost every measurement made by engineers and physicists ultimately relies on a timebase
- When we talk about "stability", we must specify the timescale of interest
 - Long-term stability ("Drift") what timescale(s)?
 - Short-term stability ("Phase noise") what offset(s)?
 - These look like different phenomena, but are really two aspects of the same problem: unwanted changes in phase over time.

Why measure long-term stability?

- Debugging a new project? Mysterious problems are sometimes obvious in the long-term time domain
 - Loop stability-margin problems
 - "Phase hits"
 - Unwanted vulnerabilities to temperature, power, vibration...anything periodic
- Comparing and tweaking clocks: OCXOs, GPS/Rb/Cs standards, and more
- Understanding and optimizing your station's behavior under different environmental conditions
- Precision timing opens new research areas to amateurs: bistatic radar, long-baseline interferometry, GPS enhancement...

Long-term stability measurement

Frequency counter

- Like spectrum analysis for PN 'measurement floor' is not great
- Best frequency counters resolve about 11 digits/second

• Time Interval Counter (TIC)

- Better resolution through interpolation and other techniques
- Best TICs have single-shot resolution in the 10-ps range

GI STOR OWNERS, Ned	47,6	1 18 30	פרוכ	45	•	•	-
			00000		A DE CO	1	16

Long-term stability measurement

• Direct digital test sets

- Measures phase like a TIC, but with SDR-like "process gain"
 - Can often measure phase noise as well
- State-of-the-art resolution is in the 1-fs (1E-15/second) range
 - 1000x better than the best counters!

Frequency Difference (Zero-based) Averaging window: Per-pixel

0	rigin	Drift (Hz/sec)					Drift (Hz/hr)	
+	8.25E-012	-3.01E-008 -			-1.08E-004			
+	1.85E-012		+1.9	4E-010			+7.00E-007	
A∨g	Time (s)	Freq (Hz) at 24091s				Error		
	0.100	10	000	000.012	769	390	+1.28E-009	
	1	10	000	000.012	848	540	+1.28E-009	
	10	10	000	000.012	869	660	+1.29E-009	
	100	10	000	000.012	863	580	+1.29E-009	
1	000	10	000	000.012	839	610	+1.28E-009	
10	000	10	000	000.012	838	270	+1.28E-009	

Trace	Notes	Input Freq	Sample Interval	Instrument	
HP 10811A oscillator	5065A	10E6 Hz	0.1 s	TimePod	
Oscilloquartz BVA 8607/008	HP 5065A Rb	5E6 Hz	1.0 s	TSC-5110A	

Allan Deviation

Trace	Notes	Input Freq	ADEV at 10s	Instrument
LPRO-101 Rb	HP 5065A	1.000E+007 Hz	3.3E-012	TimePod
Trimble Thunderbolt (stock)	TBolt 10811	1.000E+007 Hz	6.0E-012	TimePod
Trimble Thunderbolt (optimized)	HP 5065A	10E6 Hz	6.7E-013	TimePod
HP 5061A Cs	Hydrogen maser	5.000E+006 Hz	1.5E-012	TSC 5110A
HP 10811A oscillator	5065A	10E6 Hz	1.4E-012	TimePod
KVARZ CH1-76 passive H-maser	KVARZ CH1-75 active H-maser	5E+6 Hz	1.5E-013	TSC 5110A
HP 5370B residual floor (Broken trace)	(Via TADD-2 divider)	1.000E+007 Hz	2.9E-012	HP 5370A/B

Why measure phase noise?

- Phase noise is a common topic of discussion when serious homebrewers get together, from HF to microwave
 - PN tells you more about the health of your signal source than perhaps any other measurement
 - Historically one of the more difficult/awkward measurements to make
- Weak-signal work benefits from precise, repeatable tuning with minimal spreading on both the transmitter and receiver ends
- Excessive PN may harm Mininum Discernible Signal (MDS) level and quality
- WA1ZMS put it best: *stability determines what signals sound like*.
- Instrumentation design the analyzer has to be cleaner than the DUT!
 (...or does it?)

Phase Noise L(f)

Phase noise is everywhere...

- No source or device above 0 Kelvin can avoid contributing jitter
- Multiplied references common in UHF-microwave work suffer 20*log(N) effect
 - 20*log(N) = simple consequence of jitter
 - Lag/lead time of any given edge remains constant through multiplication, but the carrier period shrinks
 - +60 dBc/Hz from 10 MHz to 10 GHz
 - Sometimes *much* worse many PLLs divide before they multiply!
 - Even clean references can be degraded by process noise
 - Throwing money at the problem does not guarantee improvement

... so how do we measure it?

• Direct spectrum analysis

- Simply tune a spectrum analyzer to the USB half of the carrier

• Indirect (baseband) spectrum analysis

- Phase detector method
- Frequency discriminator method
- Two-port device measurements
- Direct digital analysis
 - Recover and measure phase variations with DSP techniques

Direct spectrum analysis

- Measures composite (AM+PM) noise
- Limited by instrument's LO noise floor
- Calibration process involves a few factors...
 - Subtract carrier level if not 0 dBm
 - Subtract 10*log(resolution BW) to normalize to 1 Hz BW
 - Add 2.5 dB to account for averaging power in "dB space"
 - Subtract equivalent noise bandwidth (ENBW) of the RBW filter
 - Usually about 0.5 dB for xtal/LC filters or 0.25 dB for FFT
- Spot measurements are often supported by dBm/Hz markers
 - Note difference between dBm/Hz and dBc/Hz use reference-level offset to avoid confusion
 - Better to use software!
 - PN from www.ke5fx.com/gpib/pn.htm
 - OEM phase-noise personality software (HP 85671A, R&S FS-K4...)

Direct spectrum analysis

Direct spectrum analysis: some typical instrument floors

Indirect PN analysis: Phase Detector method

- Downconvert signal from DUT to 0 Hz ("baseband")
 - Simple PLL with mixer as phase detector
 - Commonly-cited references
 - HP Product Note 11729B-1
 - <u>www.wenzel.com/documents/measuringphasenoise.htm</u>

Indirect PN analysis: Phase Detector method

- Requires a reference at the same frequency as the DUT
- Injection locking can be a problem need isolation amps
- Lots of options, with manuals the size of phone books
- Calibration process is much more detailed...
 - All factors in direct spectrum analysis apply here as well
 - Plus the need to account for the test set's response
 - Mixer's sensitivity when used as phase detector (volts per radian)
 - Post-mixer LNA gain, if any
 - 6 dB to convert folded DSB baseband to L(f)
 - Effect of PLL, if its bandwidth overlaps desired measurement range
- Only a masochist would attempt indirect PN measurements without software support!
 - KE5FX PN, HP 3047A, HP 3048A, Agilent E5500...

Indirect PN analysis: Phase Detector method

Phase Detector method: some typical measurements

Trace	Carrier Hz	dBc/Hz at 1000 Hz
10 MHz ref (HP 8566B 0CX0 via MC100EL16), 80 kHz LBW	8 000 000 000	-80.4
100 MHz ref (Bliley 0CX0), 200 kHz LBW	8 000 000 000	-101.0
80 MHz ref (Wenzel ULN 0CX0), 200 kHz LBW	7 680 000 000	-104.0
ADF4112-based PLL, 100 MHz ref (Bliley 0CX0), 46 kHz LBW	8 000 000 000	-80.7
Stellex YIG synthesizer with ext 10 MHz ref	9 000 000 000	-54.5
Frequency West brick, 100 MHz from Bliley OCXO	8 000 000 000	-103.7
KE5FX comb generator, 1 GHz from HP 8662A ×8	8 000 000 000	-101.1

Indirect PN analysis: Frequency Discriminator method

• Instead of a separate reference....

- Delay line converts df to dphi, then mixer converts dphi to dv
- See HP 3048A manuals, HP Product Note 11729C-2

Indirect PN analysis: Frequency Discriminator method

Indirect PN analysis: Two-port residual measurements

- Useful variation on discriminator measurement
- Replaces delay line with DUT
- Must drive splitter with a clean signal source or its broadband noise will decorrelate and fold...

Indirect PN analysis: Two-port residual measurements

Typical indirect PN analysis gear: HP 11729B/C, HP 3048A

See <u>www.hpmemory.org/news/3048/hp3048_01.htm</u> *Great* collection of HP app notes on indirect PN measurement!

Homebrewing a quadrature PLL

Simple type-2 PLL with DBM and opamp

- http://www.wenzel.com/documents/measuringphasenoise.htm
- Several other references at end of this slide deck
- Can measure two sources with a microwave mixer
- Can also use a downconverter for a single microwave source, with a stable HF reference on the other port
 - HP 11729B/C block diagram is a good example of this technique
- As with the commercial 3048A and E5500 packages, almost any spectrum analyzer can be used
 - Quadrature-PLL measurements with RF analyzers are supported by PN.EXE
 - See last FAQ entry at <u>http://www.ke5fx.com/gpib/faq.htm</u>
 - Baseband analyzers offer some advantages, though...

Baseband analysis for indirect measurements

- Advantages of popular surplus FFT analyzers
 - Faster 'sweeps' with FFT versus conventional RF analyzers
 - Resolves noise at offsets down to 1 Hz or better
 - Not too important at RF/microwave but can be good for HF work
- Disadvantages versus RF spectrum analyzers
 - Less dynamic range
 - Common to overdrive the front-end mixer in an RF analyzer for improved range, but ADCs don't tolerate this
 - High-amplitude LF content has to be high-pass filtered to avoid swamping the broadband response
 - HP 3048A hardware+software switches filters for you, but it complicates homebrew solutions
 - Less third-party software support
 - PN doesn't work with popular baseband analyzers like HP 3561A, 3562A

Baseband analysis: alternatives to older surplus gear

- Software-defined radio hardware with good LF response
 - RFSPACE SDR-IQ supported by TimeLab
 - www.ke5fx.com/timelab/readme.htm
 - \$500 retail, 14-bit ADC, can 'see' from ~100 Hz-30 MHz
- PC sound cards
 - Planned support in TimeLab
 - Range similar to SDR-IQ, but with widely varying performance
- Homebrew data-acquisition hardware
 - Analog Devices EVAL-AD7760 boards are about \$150 each
 - 100+ dB dynamic range at 2.5 MSPS
 - Overall highest performance LF-to-MF ADC I'm aware of
 - Need a very fast PC to perform realtime analysis at full rate!

EVAL-AD7760 as baseband analyzer

EVAL-AD7760 as baseband analyzer

EVAL-AD7760 as baseband analyzer: HP 8642B measured via 11729C

Build a direct digital analyzer instead?

- State of the art performance of commercial gear is better than most users will need
 - Symmetricom TSC 5120A: about \$25,000
 - ADEV floor near 3E-15/s ("3 fs"), BW=0.5 Hz
 - PN floor near –175 dBc/Hz
 - Agilent E5052B: about \$90,000
 - PN floor near –180 dBc/Hz
 - A phase-noise analyzer with 10-15 dB worse performance would still be extremely useful
- ADC eval boards to the rescue again...
 - 2x AD9446100LVDS/PCBZ-ND (\$220 each)
 - 100 MSPS x16 bit, jitter = 60 fs RMS
 - Nexys2 FPGA trainer (\$129)
 - Spartan3E FPGA with 1.2M equiv gates
 - USB 2.0 high-speed interface, 30+ MB/sec
 - Surplus Wenzel 38.025 MHz OCXO from eBay used for initial experiments (\$25)

Prototype direct digital phase noise/timing analyzer

Prototype direct digital phase noise/timing analyzer

Timing performance shootout

Allan Deviation

Trace	race Notes		ADEV at 1s	Instrument
Residual floor (Broken trace)	10811 via TADD-2 divider	1.000E+007 Hz	2.7E-011	HP 5370A/B
HP 10811A oscillator	5065A	10E6 Hz	1.4E-012	TimePod
Trimble Thunderbolt (optimized)	HP 5065A	10E6 Hz	1.3E-012	TimePod
KVARZ CH1-76 passive H-maser	KVARZ CH1-75 active H-maser	5E+6 Hz	4.2E-013	TSC 5110A
Oscilloquartz BVA 8607/008	KVARZ CH1-75 active H-maser	5E6 Hz	2.2E-013	TSC-5110A
Residual floor (Broken trace)	10811 w/splitter	10E6 Hz	3.2E-014	TSC 5110A
Residual floor (Broken trace)	10811 w/splitter	9999999.7 Hz	1.2E-014	TimePod
Residual floor (Broken trace)	10811 w/splitter	10E6 Hz	7.5E-015	TSC 5120A

Phase noise performance shootout

Phase Noise L(f)

Trace	Input Freq	Ref Freq	dBc/Hz at 10 kHz	Instrument
Wenzel ULN OCXO Wenzel ULN OCXO Tektronix 492P HP3585A PN floor	4999999.676 Hz 5000000.000 Hz 100000000 Hz 10000000 Hz	4999999.676 Hz 10E6 Hz	-173.6 -171.3 -95.8 -118.6	TimePod TSC 5120A TEK 492P HP3585A/B

http://www.ke5fx.com/stability.htm

Collection of useful links for phase noise and timing metrology, updated frequently

Special thanks to Marc Mislanghe of <u>http://www.hpmemory.org</u> for contributing photos and artwork for this presentation, and to Agilent Technologies for their support in making the material available.

