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PREFACE 

For many years following its publication in 1974, “TIME AND FREQUENCY: Theory 
and Fundamentals,” a volume edited by Byron E. Blair and published as NBS Monograph 140, 
served as a common reference for those engaged in the characterization of very stable clocks and 
oscillators. Monograph 140 has gradually become outdated, and with the recent issuance of a 
new military specification, MIL-O-55310B, which covers general specifications for crystal oscilla- 
tors, it has become especially clear that Monograph 140 no longer meets the needs it so ably 
served in earlier years. During development of the new military specification, a process involving 
discussion and input from many quarters, a key author of the specification, John Vig of the US 
Army Electronics Technology and Devices, urged the National Bureau of Standards (now the 
National Institute of Standards and Technology, NIST) to issue a revised publication to serve as 
reference for the characterization of clocks and oscillators. With NIST having agreed to this 
task, the framers of the military specification used the nomenclature “NBS Monograph 140R” in 
their document, anticipating a revised (R) volume which had not yet been prepared. 

Considering the availability of a number of newer books in the time and frequency field, 
the rewriting of a major volume like Monograph 140 seemed inappropriate. The real need has 
not been for rework of everything in Monograph 140, but only for those parts which provide 
reference to definitions and methods for measurement and characterization of clocks and oscilla- 
tors, subjects which are fully covered in a number of papers distributed through a variety of 
conference proceedings, books, and journals. For the near term, we concluded that the most 
effective procedure would be to collect a representative set of these papers into one reference 
source with introductory comments which permit the reader to quickly access material required 
to meet particular needs. Thus, we arrived at this particular collection. The editors’ challenge 
has been to select representative papers, to organize them in a convenient manner, and to deal 
with errata and notation inconsistencies in a reasonable manner. In the longer term, the materi- 
al in this volume needs to be more completely integrated. This task would profitably await 
further developments in the area of phase noise measurements. 

Donald B. Sullivan 
David W. Allan 
David A. Howe 
Fred L. Walls 

Boulder, Colorado 
February 28, 1990 
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CHARACTERIZATION OF CLOCKS AND OSCILLATORS 

D.B. Sullivan, D.W. Allan, D.A. Howe and F.L. Walls, Editors 

Time and Frequency Division 
National Institute of Standards and Technology 

Boulder, Colorado 80303 

This is a collection of published papers assembled as a reference for those in- 
volved in characterizing and specifying high-performance clocks and oscillators. It 
is an interim replacement for NBS Monograph 140, Time and Frequency: Theory 
and Fundamentals, an older volume of papers edited by Byron E. Blair. This 
current volume includes tutorial papers, papers on standards and definitions, and 
a collection of papers detailing specific measurement and analysis techniques. 
The discussion in the introduction to the volume provides a guide to the content 
of the papers, and tables and graphs provide further help in organizing methods 
described in the papers. 

Key words: Allan variance, clocks, frequency, oscillators, phase noise, spectral 
density, time, two-sample variance. 

A. INTRODUCTION 

A.1 OVERVIEW 

The papers in this volume are organized into three groups: Introductory and Tutorial 
Papers, Papers on Definitions and Standards, and Supporting Papers. The three sections (A.2, 
A.3, and A.4) immediately following this introduction provide overviews of each of the three 
groups of papers with comments on each paper. The arrangement of the papers in this particu- 
lar order is somewhat arbitrary, since, for example, the first two papers under Supporting Papers 
could be included with the Introductory and Tutorial Papers, while paper B.4 could easily be 
placed with the Supporting Papers. Our rationale for the first group of papers (discussed in 
more detail in section A.2) is that, taken as a group, they provide reasonably complete coverage 
of the concepts used in characterizing clocks and oscillators. Several of the papers, taken individ- 
ually, are good introductory papers, but, for this publication, need to be complemented with 
additional material to provide coverage of an appropriate range of topics. 

The second group (section C) of three papers discussed in section A.3 were specifically 
written to address definitions and standards. This is a particularly important section, since 
consistency in specification of performance can only be achieved if manufacturers and users refer 
to the same measurement and characterization parameters. 

The Supporting Papers in section D provide additional discussion of topics introduced in 
the first group. The first papers in this group (D.l and D.2) also provide good introductory 
material which might be used with section B to gain a better understanding of the concepts. 

Section A.5 provides a table and graph designed to help the reader select a measurement 
method to meet a particular need. To make this useful, it was kept simple and must therefore 
be used with care. Such tabular information can never be arranged well enough to anticipate all 
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of the wide range of measurement situations which might be encountered. However, it can serve 
as a starting point for the decision-making process. 

Section A.6 contains some new material which should be helpful in understanding the 
relationship between the Allan variance and the modified Allan variance. Since these ideas are 
unpublished, we include them here rather than with the papers on those topics. This section is 
followed by a reading list with references to major articles and books which can be used as 
supplementary resources. Because some of the papers include extensive reference lists, we have 
limited our list to works which are either very comprehensive or only recently published. Partic- 
ularly extensive reference lists are included with papers B.l, B.2, C.l, C.3, D.l, and D.2. 

Since notation and definitions have changed over the period bridged by these papers, we 
have highlighted problem areas on the papers with an asterisk (*). A note directs the reader to 
the Appendix where the particular problem is discussed. We have also used this device to 
highlight inconsistencies and the usual typographic and other errors which creep into the litera- 
ture. The page numbers of the original publications are retained, but we have also used a 
continuous page numbering to simplify location of items in the volume. 

The topical index on page xi organizes much of the material in the papers under a few 
key subject headings. This index provides a shortcut to locating material on a particular topic. 

A.2 COMMENTS ON INTRODUCTORY AND TUTORIAL PAPERS 

Paper B.l in this section, by Howe, Allan, and Barnes, was originally prepared and 
presented as a tutorial paper and has been used with success as an introductory paper in our 
annual Time and Frequency Seminar. This paper is now 9 years old, so there are a substantial 
number of notes which relate to updates in notation. The paper is nevertheless highly readable 
and introduces many of the key measurement methods, providing circuit diagrams with enough 
specific detail to be useful in real laboratory situations. Furthermore, it includes discussion and 
examples on handling of data which are useful for practical application of the concepts. The 
paper presents a particularly useful discussion of the pitfalls encountered in digitizing data, a 
problem which is often overlooked. 

The second paper (B.2) by Stein is more advanced and those familiar with the general 
concepts may find it a better starting point. This and other papers in this collection cite earlier 
IEEE recommendations on measures of frequency stability and, while much of this has not 
changed, there is a new IEEE standard (paper C.l). In general, the reader should consult the 
overview and papers of section C if there is any question concerning definitions or terminology. 
Paper B.2 is quite comprehensive, introducing topics (not covered in paper B.l) such as the 
modified Allan variance, the delay-line-phase-noise-measurement system, and the use of fre- 
quency synthesis to reach frequencies far from normally available reference frequencies. 

The materials in papers B.l and B.2, aside from differences in level of presentation, are 
organized in quite different ways. The Howe-Allan-Barnes paper goes directly to the measure- 
ment concepts and then describes the means for analyzing the output data and understanding the 
confidence of the measurements. On the other hand, the Stein paper carefully lays out the 
theoretical background needed to analyze the data before introducing the measurement concepts. 
Both papers cover time-domain and frequency-domain measurements. 

Paper B.3 by Allan reviews the concepts of the two-sample or Allan variance and the 
modified Allan variance showing how classical statistical methods fail to usefully describe the 
time-domain performance of good oscillators. The Allan variance concept is also introduced in 
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papers B.l and B.2, and the modified Allan variance is described further in papers D.4 and D.5. 
The presentation in paper B.3 is particularly useful in that it discusses general aspects of perfor- 
mance of different types of oscillators (quartz, rubidium, hydrogen, and cesium) providing the 
basis for prediction of time errors, a topic which may prove useful to those who must develop 
system specifications. 

Paper B.4 by Walls, Clements, Felton, Lombardi, and Vanek adds to the discussion of 
frequency-domain measurements providing information on methods which can be used to in- 
crease the dynamic range for both carrier frequency and for Fourier frequencies up to 10 percent 
from the carrier. With some aerospace hardware now carrying phase-noise specifications, this is 
an important addition to the literature. 

A3 COMMENTS ON PAPERS ON STANDARDS AND DEFINITIONS 

The first paper in this group (paper C.1) outlines the standard terminology now used for 
fundamental frequency and time metrology. This document was widely circulated for comment 
during the draft stage and, with its acceptance by IEEE as a standard, supersedes the earlier 
reference (paper C.2) which had served as the foundation for characterization of frequency 
stability. This latter paper is included because it is so widely cited, and the reader will probably 
be confronted with specifications based on its recommendations. Paper C.2 contains additional 
material on applications of stability measures and measurement techniques including a useful 
discussion of some of the common hazards in measurements. Paper C.l restricts itself to very 
concise statements of the definitions. 

The reader will note that the updated terminology in the first paper (C.l) varies in a 
number of minor ways from the earlier paper (C.2). A notable addition to definitions is the 
introduction of script “ell”, f(f), which has become an important measure of phase noise. This 
quantity was previously defined as the ratio of the power in one sideband, due to phase modu- 
lation to the total signal power. For Fourier frequencies far from the carrier, this quantity can 
be simply related to the usual spectral densities which are the quantities that are generally mea- 
sured, but the relation breaks down in the important region near the carrier. To resolve this 
problem, the new standard defines the approximate relation between !f?(f) and spectral density as 
being exact and applicable for any Fourier frequency. 

The third paper in this group (paper C.3), from the 1986 report of the International 
Radio Consultative Committee (CCIR), presents the definitions and terminology which have 
been accepted for international use by this body. The material in this particularly readable 
document is fairly consistent with the IEEE standard and would be useful to those involved in 
specification of performance for international trade. A number of minor changes to this docu- 
ment have been recommended by different delegations to the CCIR and these will likely be 
made in their next publication. 

A.4 COMMENTS ON SUPPORTING PAPERS 

Papers D.l and D.2 are included in this collection for a number of reasons. First, they 
provide alternative introductions to the general topic of oscillator characterization. And second, 
they include material not fully covered by introductory papers, B.l and B.2. 
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The first of these (D.l) by Lesage and Audoin covers most of the same ground as papers 
B.l and B.2, but, in addition, includes a nice discussion of characterization of frequency stability 
via filtering of phase or frequency noise, a method which may be especially useful for rapid, 
automated measurements where high accuracy is not required. Furthermore, this paper discusses 
characterization of stable laser sources, a topic not covered in any of the other reference papers. 

Paper D.2 by Lance, Seal, and Labaar limits itself to discussion of the measurement of 
phase noise and amplitude-modulation (AM) noise. The paper presents a detailed discussion of 
delay-line measurement methods which can be used if a second reference oscillator is not 
available. The delay-line concept is also introduced in B.2 and B.4, but in much less detail. 
While the delay-line method is less sensitive (for lower Fourier frequency) than two-oscillator 
methods, it is easier to implement. The paper contains many good examples which the reader 
will find useful. 

A complete discussion of AM noise is beyond the scope of this volume. AM noise is 
usually ignored in the measurement and specification of phase noise in sources under the as- 
sumption that the AM noise is always less than the phase noise. This assumption is generally 
true only for Fourier frequencies close to the carrier. At larger Fourier frequencies the normal- 
ized AM noise can be the same order of magnitude as the phase noise. In systems with active 
amplitude leveling, the normalized AM noise can be higher than the phase noise. Under this 
condition the AM to PM conversion in the rest of the system may degrade the overall phase 
noise performance. For these reasons, we cannot ignore amplitude noise altogether. Paper D.2 
provides a useful discussion of amplitude noise. Note 1 in appendix E provides further informa- 
tion on definitions, notation and, in particular, the specification of added phase noise and 
amplitude noise for signal-handling components. 

The next contribution (D.3) provides substantially more detail on the extension of the 
time-domain, dual-mixer concept for highly accurate time and time-interval measurements. The 
basic dual-mixer ideas are included in papers B.l and B.2. 

Paper D.4, published recently, provides the first quantitative treatment of confidence 
estimates for phase-noise measurements. To the best of our knowledge, this is the only available 
treatment of this important subject. We expect to see additional papers on this topic in the 
future. 

Paper D.5 discusses the modified Allan variance in more detail than the introductory 
papers B.l, B.2, and B.3. It is followed by the l&age-Ayi paper (D.6) which provides analytical 
expressions for the standard set of power-law noise types and also includes discussion of the 
uncertainty of the estimate of the modified Allan variance. 

Linear frequency drift in oscillators is treated by Barnes in paper D.7. As noted in this 
paper, even with correction for drift, the magnitude of drift error eventually dominates all time 
uncertainties in clock models. Drift is particularly important in certain oscillators (e.g., quartz 
oscillators) and a proper measure and treatment of drift is essential. As with other topics 
treated by this group of papers, introductory papers B.l, B.2, and B.3 present some discussion of 
frequency drift, but D.7 is included because it contains a much more comprehensive discussion of 
the subject. 

The final paper (D.8) by Barnes and Allan contains the most recent treatment of mea- 
surements made with dead times between them. Paper C.2 introduced the use of bias functions, 
B, and B,, which can be used to predict the Allan variance for one set of parameters based on 
another set (for the power-law noise models). This last paper extends those ideas, introducing a 
third bias function, B,, which can be used to translate the Allan variance between cases where 
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dead time is accumulated at the end and where dead time is distributed between measurements, 
a useful process for many data-acquisition situations. 

A.5 GUIDE TO SELECTION OF MEASUREMENT METHODS 

The table and graph in this section are quick guides to performance limits of the different 
methods as well as indications of advantages and disadvantages of each. The ideas presented 
here are drawn from papers B.l and B.4, but we have modified and expanded the material to 
make it more comprehensive. The table has been kept simple, so the suggested methods should 
be viewed as starting points only. They cannot possibly cover all measurement situations. 

For a given measurement task, it is often best to start with a quick, simple measurement 
which will then help to define the problem. For example, faced with the need to characterize an 
oscillator, a good starting point might be to feed the output of that oscihator along with the 
output of a similar, but more stable, oscillator into a good mixer and then look at the output. If 
the two can be brought into quadrature by tuning one of the oscillators or by using a phase- 
locked loop, then the output can be fed to a spectrum analyzer to get an immediate, at least 
qualitative idea, of the performance of the oscillator. This mixing process, which brings the 
fluctuations to baseband where measurement is much more straightforward, is basic to many of 
the measurement methods. A large number of measurement problems can probably be resolved 
with this simple, single-conversion, heterodyne arrangement. If the simplest approach is insuffi- 
cient, then some of the more advanced methods outlined below can be used. 

There are many ways to go about categorizing the various measurement methods. Since 
this volume is aimed at practical measurements, we choose to use the characteristics of the 
measurement circuit as the basis for sorting. In this arrangement we have (1) direct measure- 
ments where no signal mixers are used, (2) heterodyne measurements where two unequal fre- 
quencies are involved, and (3) homodyne, measurements where two equal frequencies are in- 
volved. These methods are listed below. 

I. Direct Measurements 
1. Measurements at the Fundamental Frequency 
2. Measurements after Multiplication/Division 

II. Heterodvne Measurements 
1. Single-Conversion Methods 
2. Multiple-Conversion Methods 
3. Time-Difference Method 

a. Dual-Mixer, Time-Difference Method 
III. Homodvne Measurements 

1. Phase-Lock-Loop Methods (two oscihators) 
a. Loose-Phase-Lock-Loop Method 
b. Tight-Phase-Lock-Loop Method 

2. Discriminator Methods (single oscillator) 
a. Cavity-Discriminator Method 
b. Delay-Line Method 
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Table 1. Guide to Selection of Measurement Methods. 

Measurement 
Method 

Time 
Accuracya 

Time 
Stability 

Frequeny Frequenp 
Accuracy Stability Advantages Disadvantages 

(1 dav) o..(r) 

I. Direct Measurements 

See Note Limited by Limitedly Limited by Very simple to perform. Extremely limited resolution not 
1. At the Fundamental Frequency # 2 in time base time base time base appropriate for high stability os- 

Appendix stability accuracy stability cillatorsc 

2. After Multiplication/Division 
See Note Limitedby Limitedby Limitedby Very simple to perform; for fre Provides only modest extension 
x2in time base time base time base quency multiplication factor N, of above method and thus suf- 
Appendix stability accuracy stability noise increases in dEl by 2OlogN. fers similar limitations.c 

II. Heterodyne Measurements 

1. Single-Conversion Methods 
2. Multiple Conversion Methods 

Measurement noise can typically Minimum r determined by period 

-lo-‘/(vo7) 
be made less than oscillator in- of beat frequency, typically not ad- 
stabilities for r * 1 s and longer. justable; cannot compare oscillators 

- See -10-16 
Greenhalld 

which-$ 10 MHz near zero beat; additional informa- 
at 10 MHz is -10 /T tion needed to tell which oscillator 

is high\low in frequency, dead time 
often associated with measurements. 

3. TimeDifference Method -100 ps 
“lo-‘/(Yor) 

Wide bandwidth input allows a Using best available equipment, 
variety of sign&, simple to use; measurement noise is typically 

-20 ps -10-16 which at 10 MHz 
at 10 MHz is -10-14/r problem; 

cycle ambiguity almost never a greater than oscillator instabilities 
measures time, time sta- for T less than several seconds, 
bility, frequency, and frequency hence is often limited to long-term 
stability. measurements. 

a. Dual-Mixer 
TimeDifference Method -100 ps -5 ps 

No dead time; may choose sample More complex than other methods, 

-lo-‘/(var) 
time (1 ms to as large as desired); and hence more susceptible to ex- 
oscillators may be at zero beat or traneous signal pickup; e.g., ground 

-1(-p which at 10 MHz 
at 10 MHz is -10-14/r 

different; measurement bandwidth loops; the time difference is modulo 
easily changed; measures time, the beat period, e.g., 200 ns at 
time stability, frequency, and fre- 5 MHz. 
quency stability. 

*Accuracy of the measurement cannot be belter than the stability of the measurement. Accuracy is limited by the accuracy of the reference oscillator. 
%is is for a measurement bandwidth of 10 Hz; v, = frequency r = measurement time. 
7hi.s assumes use of a simple frequency counter. 
ke CZF~nhall, 41st Annual Freqwncy .Contd Symposium, 1987, pp. 126-129. 

-) means that the method 1s not generally appropriate for this quantity. 
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Table 1. Guide to Selection of Measurement Methods. (continued) 

Measurement 
Method 

Time 
Accuracya 

Time 
Stability 
(1 dav) 

Frequeny Frequeny 
Accuracy Stability 

u...(7) 
Advantages Disadvantages 

III. Homodyne Methods 

1. Phase-Lock-Loop Methods 

Particularly useful for measurement Generally no used for measurement 
of phase noise. of time. 

Assure continuous quadrature of Care needed to assure that noise of 
signal and reference. interest is outside loop bandwidth. 

a. Loose-PhaseLock Loop 
Depends on --lo-‘/(~,,r) 

Useful for short-term time stability 
analysis as well as spectrum analysis 

calibration which at 10 MHz and the detection of periodic@ in 
of varicap is -lo-r4/r noise as spectral lines; excellent 

sensitivity. 

b. Tight-Phase-Lock Loop 
Depends on -lo-‘/(vsr) 

Measurement noise typically less 
than oscillator instabilities for 

calibration which at 10 MHz 
of varicap is -10-“/r 

r = 1 s and longer; good measure- 
ment system bandwidth control; 
dead time can be. made small or 
negligible. 

Long-term phase measurements 
(beyond several seconds are not 
practical. 

Need voltage controlled reference 
oscillator; frequency sensitivity is 
a function of varicap tuning curve, 
hence not conducive to measuring 
absolute frequency differences. 

2. Discriminator Methods 
Requires no reference oscillator. Substantially less bandwidth than 

two-oscillator, homodyne methods; 
sensitivity low at low Fourier fre 
quency. 

a. Cavity Discriminator 

Depends on Depends on Requires no reference oscillator; 
character-is- characteris- very easy to set up and high in 
tics of dis- tics of dis- sensitivity, practical at microwave 
criminator criminator frequencies. 

Requires more difficult calibration 
to obtain any accuracy over even 
modest range of Fourier frequencies; 
accurate only for Fourier frequen- 
cies less than 0.1 x bandwidth. 

b. Delay Line 
Depends on 
characteris- 
tics of delay 
line 

Requires no reference oscillator; 
dynamic range set by properties 
of delay line; practical at micro- 
wave frequencies. 

Substantially less accurate than two- 
oscillator, homodyne methods; cum- 
bersome sets of delay lines needed 
to cover much dynamic range; con- 
siderable delay needed for measure 
ments below 100 kHz from carrier. 

aAccuracy of the measurement cannot be better than the stability of the measurement. Accuracy is limited by the accuracy of the reference oscillator. 
%his is for a measurement bandwidth of lo4 Hz; Y,, = frequency; 7 = measurement time. 
The dash (-) means that the method is not generally appropriate for this quantity. 
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Curve A. 
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Curve F. 
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Comparison of nominal lower noise limits for different 
frequency-domain measurement methods. 

The noise limit (resolution), S@(f), of typical double-balanced 
mixer systems at carrier frequencies from 0.1 MHz to 26 Gl3z. 
The noise limit, S@(f), for a high-level mixer. 
The correlated component of S+(f) between two channels 
using high-level mixers. 
The equivalent noise limit, S@(f), of a 5 to 25 MHz frequency 
multiplier. 
Approximate phase noise limit for a typical delay-line system 
which uses a 500 ns delay line. 
Approximate phase noise limit for a delay-line system which 
achieves a 1 ms delay through encoding the signal on an 
optical carrier and transmitting it across a long optical fiber to 
a detector. 
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Table 1 organizes the measurement methods in the above manner giving performance 
limits, advantages and disadvantages for each. Figure 1 following the table provides limitations 
for phase noise measurements as a function of Fourier frequency. The reader is again reminded 
that the table is highly simplified giving nominal levels that can be achieved. Exceptions can be 
found to almost every entry. 

A.6 RELATIONSHIP OF THE MODIFIED ALLAN VARIANCE TO THE ALLAN VARIANCE 

In sorting through this set of papers and other published literature on the Allan Variance, 
we were stimulated to further consider the relationship between the modified Allan variance and 
the Allan variance. The ideas which were developed in this process have not been published, so 
we include them here. Paper D.6, “Characterization of Frequency Stability: Analysis of the 
Modified Allan Variance and Properties of Its Estimate,” by Lesage and Ayi adds new insights 
and augments the Allan and Barnes paper (DS), “A Modified Allan Variance with Increased 
Oscillator Characterization Ability.” In this section we extend the ideas presented in these two 
papers and provide further clarification of the relationship between the two variances, both of 
which are sometimes referred to as two-sample variances. 

Figure 2 shows the ratio [mod uy(~)/cry( r)12 as a function of n, the number of time or 
phase samples averaged together to calculate mod oY( 7). This ratio is shown for power-law noise 
spectra (indexed by the value of a) running from f2 to f2. These corrected results have a some- 
what different shape for a = -1 than those presented in either paper D.5 or paper D.6. Further- 
more, this figure also shows the dependence on bandwidth for the case where (r = 1. For all 
other values of a shown, there is no dependence on bandwidth. Table 2 gives explicit values for 
the ratio as a function of n for low n as well as the asymptotic limit for large n. For a = 1, the 
asymptotic limit of the ratio is considerably simplified from that given in papers D.5 and D.6. 
With these results it is possible to easily convert between mod crY( r) and o,.(r) for any of the 
common power-law spectra. 

The information in figure 2 and table 2 was obtained directly from the basic definitions of 
oY(r) and mod cry(r) using numerical techniques. The results of the numerical calculations were 
checked against those obtained analytically by Allan and Barnes (D.5) and Lesage and Ayi (D.6). 
For a = 2, 0 and -2 the results agree exactly. For a = 1 and -1 the analytical expressions are 
really obtained as approximations. The numerical calculations are obviously more reliable. 
Details of our calculations can be found in a NlST report [l]. A useful integral expression (not 
commonly found in the literature) for modag( r) is 

mod+z) - 2 A s,(f)sid(x Tf) 
I rl'n2r3 0 f2sin2(xtof) 

df- 

Figure 2 and table 2 show that, for the fractional frequency fluctuations, mod ~$7) 
always yields a lower value than a,(r). In the presence of frequency modulation (FM) noise 
with a 2 0, the improvement is very significant for large n. This condition has been examined in 
detail by Bernier [2]. For white FM noise, a = 0, the optimum estimator for time interval r is 
to use the value of the times or phases separated by r to determine frequency. This is analo- 
gous to the algorithm for calculating ay( r) which yields the one-sigma uncertainty in the estimate 
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Table 2. Ratio of mod D:(T) to ~$7) versus n for common power-law noise types S,(f) = h,P. n is the 
number of time or phase samples averaged to obtain mod o:(, = nT,, where T,,) is the minimum sample time. 
o,, is 2a times the measurement bandwidth fh. 

R(n) = 
mod (I:(T) 

qr> 
vs. n T = nrO 

1 

2 

3 

4 

5 

6 

7 

8 

10 

14 

20 

30 

50 

100 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.859 0.738 0.616 0.568 0.543 0.525 0.504 0.500 

0.840 0.701 0.551 0.481 0.418 0.384 0.355 0.330 

0.831 0.681 0.530 0.405 0.359 0.317 0.284 0.250 

0.830 0.684 0.517 0.386 0.324 0.279 0.241 0.200 

0.828 0.681 0.514 0.349 0.301 0.251 0.214 0.167 

0.827 0.679 0.507 0.343 0.283 0.235 0.195 0.143 

0.827 0.678 0.506 0.319 0.271 0.219 0.180 0.125 

0.826 0.677 0.504 0.299 0.253 0.203 0.160 0.100 

0.826 0.675 0.502 0.274 0.230 0.179 0.137 0.0714 

0.825 0.675 0.501 0.253 0.210 0.163 0.119 0.0500 

0.825 0.675 0.500 0.233 0.194 0.148 0.106 0.0333 

0.825 0.675 0.500 0.210 0.176 0.134 0.0938 0.0200 

0.825 0.675 0.500 0.186 0.159 0.121 0.0837 0.0100 

Limit 0.825 0.675 0.500 t I 3.37 
1.04 +3 lnahr 1 - 

l/n 



8 
0 7- 

TN-11 

Notes and Errata
See the first item on the third Errata page for a correction.  Click on the link for this plot to go there.



of the frequency measured in this manner over the interval T. The estimate of frequency, 
obtained by averaging the phase or time data, is degraded by about 10 percent from that ob- 
tained by using just the end points [3]. This is analogous to the algorithm for calculating mod 
oY(r) which, in this case, underestimates the uncertainty in measuring frequency by ./2. For 
white phase modulation (PM) noise, (r = 2, the optimum estimator for frequency is obtained by 
averaging the time or phase data over the interval r. This is analogous to the algorithm for 
calculating mod oY(r) which yields the one-sigma uncertainty in the estimate for frequency 
measured in this manner. This estimate for frequency is Jn better than that provided by a,(r). 

Based on these considerations, it is our opinion that mod oY(r) can be profitably used 
much more often than it is now. The presence of significant high-frequency FM or PM noise in 
the measurement system, in an oscillator, or in an oscillator slaved to a frequency reference, is 
very common. The use of mod cry(r) in such circumstances allows one to more quickly assess 
systematic errors and long-term frequency stability. In other words, a much more precise value 
for the frequency or the time of a signal (for a given measurement interval) can be derived using 
mod ay( r) when n is large. 

The primary reasons for using ay( r) are that it is well known, it is simple to calculate, it 
is the most efficient estimator for FM noise (a I 0), and it has a unique value for all r. The 
advantages of mod cry(r) are cited in the above paragraph. There are some situations where a 
study of both a&r) and mod (~~(7) can be even more revealing than either one. The disadvan- 
tages of using mod a&r) are that it is more complex to calculate and thus requires more com- 
puter time and it has not been commonly used in the literature, so interpretation of the results is 
more difficult to reconcile with published information. Another concern sometimes raised is that 
mod by(r) does not have a unique value in regions dominated by FM noise (a > 0). With 
rapidly increasing computer speeds, the computational disadvantage is disappearing The correct- 
ed and expanded information presented in figure 2 and table 2 addresses the concern about 
uniqueness. 

The primary disadvantage of using oY( r) is that the results can be too conservative. That 
is, if the level of high-frequency FM noise is high, then the results are biased high, and it can 
take much longer (often orders of magnitude longer) to characterize the underlying low-frequen- 
cy performance of the signal under test. 
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PROPERTIES OF SIGNAL SOURCES AND 
MEASUREMENT METHODS 

0. A. Howe, 0. W. Allan, and J. A. Barnes 

lime and Frequency Division 
National Bureau of Standards 

Boulder, Colorado 80303 

Summary 
This paper is a review of frequency stability 

measurement techniques and of noise properties of 
frequency sources. 

First, a historical development of the utetul- 
ness of spectrum analysis and time domain measure- 
ments will be presented. Then the rationale will 
be stated for the use of the two-sample (Allan) 
variance rather than the classical variance. 
Next, a range of measurement procedures will be 
outlined with the trade-offs given for the various 
techniques employed. Methods of interpreting the 
measurement results will be given. In particular, 
the five commonly used noise models (white PM, 
flicker PM, white FM, flicker FM, and random walk 
FM) and their causes will be discussed. Methods 
of characterizing systematics will also be given. 
Confidence intervals on the various measures will 
be discussed. In addition, we will point out 
methods of improving this confidence interval for 
a fixed number of data points. 

Topics will be treated in conceptual detail. 
Only light (fundamental) mathematical treatment 
will be given. 

Although traditional concepts. will be de- 
tailed, two new topics will be introduced in this 
paper: (1) accuracy limitations of digital and 
computer-based analysis and (2) optimizing the 
results from a fixed set of input data. 

The final section will be devoted to funda- 
mental (physical) causes of noise in commonly used 
frequency standards. Also transforms from time to 
frequency domain and vice-versa will be given. 

%E$* 
Frequency stability; Oscillator noise 

Power law spectrum; Time-domain sta- 
bility; Frequency-domain stability: White noise; 
Flicker noise. 

Introduction 

Precision oscillators play an important role 

in high speed communications, navigation, space 

tracking, deep space probes and in numerous other 

important applications. In this paper, we will 

review some precision methods of measuring the 

frequency and frequency stability of precision 

oscillators. Development of topics does not rely 

heavily on mathematics. The equipment and set-up 

for stability measurements are outlined. Examples 

and typical results are presented. Physical 

interpretations of common noise processes are 

discussed. A table is provided by which typical 

frequency domain stability characteristics may be 

translated to time domain stability characteristics 

and vice-versa. 

1. THE SINE WAVE AN0 STABILITY 

A sine wave signal generator produces a 

voltage that changes in time in a sinusoidal way 

as shown in figure 1.1. The signal is an oscil- 

lating signal because the sine wave repeats itself. 

A cycle of the oscillation is produced in one 

period "T". The phase is the angle '%" within a 

cycle corresonding to a particular time "t". 

FIGURE 1.1 

It is convenient for us to express angles in 

radians rather than in units of degrees, and 

positive zero-crossings will occur at even mul- 

tiples of n-radians. The frequency "Y" is the 

number of cycles in one second, which is the 

reciprocal of period (seconds per cycle). The 

expression describing the voltage "V" out of a 

sine wave signal generator is given by V(t) = VP 

sin [a(t)] where VP is the peak voltage amplitude. 

Equivalent expressions are 

v(t) = Vpsin 
( > 
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and 

V(t) = Vp sin (27tvt). 

Consider figure 1.2. Let's assume mat the maximum 

value of "V" equals 1, hence "VP" = 1. We say 

that the voltage "V(t)" is normelired to unity. 

If we know the frequency of a signal and if the 

signal is a sine wave, then we can determine the -- 

incremental change in the period "T" (denoted by 

At) at a particular angle of phase. 

+t 

V 

-1 

‘ii 
0 --:---- - --- - ati 

FIGURE 1.2 

Note that no matter how big or small At may be, we 

can determine AV. Let us look at this from another 

point of v.iew. Suppose we can measure AV and At. 

From this, there is a sine wave at a unique minimum 

frequency corresponding to the given AV and At. 

For infinitesimally small At, this frequency is 

called the instantaneous frequency at this t. The 

smaller the interval At, the better the approxi- 

mation of instantaneous frequency at t. 

When we speak of oscillators and the signals 

they produce, we recognize that an oscillator has 

some nominal frequency at which it operates. The 

"frequency stability" of an oscillator is a ten 

used to characterize the frequency fluctuations of 

the oscillator signal. There is no formal defini- 

tion for "frequency. stability". However, one 

usually refers to frequency stability when com- 

paring one oscillator with another. As we shall 

see later, we can define particular aspects of an 

osci 1 later's output then draw conclusions about 

its relative frequency stability. In general 

terms, 

"Frequency stability is the degree to which 

an oscillating signal produces the same value 

of frequency for any interval, At, throughout 

a specified period of time". 

Let's examine the two waveforms shown in 

figure 1.3. Frequency stability depends on the 

amount of time involved in a measurement. Of the 

two oscillating signals, it is evident that "2" is 

more stable than "1" from time t, to t, assuming 

the horizontal scales are linear in time. 

FIGURE 1.3 

From time tl to t,. there may be some question as 

to which of the two signals is more stable, but 

it's clear that from time t, to t,, signal "I" is 

at a different frequency from that in interval t, 

to t,. 

If we want an oscillator to produce a parti- 

cular frequency vo, then we're correct in stating 

that if the oscillator signal frequency deviates 

from v. over any interval, this is a result of 

something which is undesirable. In the design of 

an oscillator, it is important to consider the 

sources of mechanisms which degrade the oscil- 

lator's frequency stability. All undesirable 

mechanisms cause random (noise) or systematic 

processes to exist along with the sine wave signal 

of the oscillator. To account for the noise 

components at the output of a sine wave signal 

generator, we can express the output as 

v(t) = [V, + e(t)] sin [2nvCt + e(t)]. (1.1) 
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where V,, s nominal peak voltage amplitude, 

&(t) L deviation of amplitude from nominal, 

"0 I nominal fundamental frequency, 

e(t) H deviation of phase from nominal. 

Ideally "8" and "6" should equal zero for all 

time. However, in the real world there are no 

perfect oscillators. To determine the extent of 

the noise components "E" and "e", we shall turn 

our attention to measurement techniques. 

The typical precision oscillator, of course, 

has a very stable sinusoidal voltage output with a 

frequency v and a period of oscillation T, which 

is the reciprocal of the frequency (v = l/T). One 

goal is to measure the frequency and/or the fre- 

quency stability of the sinusoid. Instability is 

actuaily measured, but with little confusion it is 

often called stability in the literature. Natur- 

ally, fluctuations in frequency correspond to 

fluctuations in the period. Almost all frequency 

measurements, with very few exceptions, are mea- 

surements of phase or of the period fluctuations 

in an oscillator, not of frequency, even though 

the frequency may be the readout. As an example, 

most frequency counters sense the zero (or near 

zero) crossing of the sinusoidal voltage, which is 

the point at which the voltage is the most sensi- 

tive to phase fluctuations. 

One must also realize that any frequency 

measurement involves two oscillators. In some 

instances, one oscillator is in the counter. It 

is impossible to purely measure only one oscil- 

lator. In some instances one oscillator may be 

enough better than the other that the fluctuations 

measured may be considered essentially those of 

the latter. However, in general because frequency 

measurements are always dual, it is useful to 

define: 

"1 - "0 
Y (t)'=- 

V 
(1.2) 

0 

as the fractional frequency difference or deviation 

of oscillator one, vl, with respect to a reference 

oscillator v. divided by the nominal frequency vo. 

Now, y(t) is a dimensionless quantity and useful 

in describing oscillator and clock performance; 

e-g. , the time deviation, x(t), of an oscillator 

over a period of time t, is simply given by: 

x(t) = Jt y(t')dt' 
0 

(1.3) 

Since it is impossible to measure instantaneous 

frequency, any frequency or fractional frequency 

measurement always involves some sample time, 3t 

or "1''--some time window through which the oscil- 

lators are observed; whether it's a picosecond, a 

second, or a day, there is always some sample 

time. So when determining a fractional frequency, 

y(t), in fact what is happening is that the time 

deviation is being measured say starting at some 

time t and again at a later time, t + t. The 

difference in these two time deviations, divided 

by t gives the average fractional frequency over 

that period t: 

B(t) = 
x(t + T) - x(tl 

r (1.4) 

Tau, t, may be called the sample time or averaging 

time; e.g., it may be determined by the gate time 

of a counter. 

What happens in many cases is that one samples 

a number of cycles of an oscillation during the 

preset gate time of a counter; after the gate time 

has elapsed, the counter latches the value of the 

number of cycles so that it can be read out, 

printed, or stored in some other way. Then there 

is a delay time for such processing of the data 

before the counter arms and starts again on the 

next cycle of the oscillation. During the delay 

time (or process time), information is lost. We 

have chosen to call it dead time and in some 

instances it becomes a problem. Unfortunately for 

data processing in typical oscillators the effects 

of dead time often hurt most when it is the hardest 

to avoid. In other words, for times that are 

short compared to a second when it is very dif- 

ficult to avoid dead time, that is usually where 

dead time can make a significant difference in the 

data analysis. Typically for many oscillators, if 
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the sample time is long compared to a second, the 

dead time makes little difference in the data 

analysis, unless it is excessive. ' New equipment 

or techniques are now available which contribute 

zero or negligible dead time. 2 

In reality, of course, the sinusoidal output 

of an oscillator is not pure, but it contains 

noise fluctuations as well. This section deals 

with the measurement of these fluctuations to 

determine the quality of a precision signal source. 

We will describe five different methods of 

measuring the frequency fluctuations in precision 

oscillators. 

1.1 Common Methods of Measurinq Frequency Sta- 

bility 

A. Beat frequency method 

The first system is called a heterodyne 

frequency measuring method or beat frequency 

method. The signal from two independent oscil- 

lators are fed into -the two ports of a double 

balanced mixer as illustrated in figure 1.4. 

HETEROOYNE FREQUENCY 
MEASUREMENT METHOD 

FIGURE 1.4 

The difference frequency or the beat frequency, 

vb, is obtained as the output of a low pass filter 

which follows the mixer. This beat frequency is 

then amplified and fed to a frequency counter and 

printer or to some recording device. The frac- 

tional frequency is obtained by dividing vb by the 

nominal carrier frequency vo. This system has 

excellent precision; one can measure essentially 

all state-of-the-art oscillators. 

e. Dual mixer time difference (DTMD) system 

This system shows some significant promise and 

has just begun to be exploited. A block diagram is 

shown is figure 1.5. 

FIGURE 1.5 

To preface the remarks on the DMTD, it should be 

mentioned that if the time or the time fluctua- 

tions can be measured directly, an advantage is 

obtained over just measuring the frequency. The 

reason is that one can calculate the frequency 

from the time without dead time as well as know 

the time behavior. The reason, in the past, that 

frequency has not been inferred from the time (for 

sample times of the order of several seconds and 

shorter) is that the time difference between a 

pair of oscillators operating as clocks could not 

be measured with sufficient precision (commercially 

the best that is available is 1O-11 seconds). The 

system described in this section demonstrates a 

precision of lo-l3 seconds. Such precision opens 

the door to making time measurements as well as 

frequency and frequency stability measuements for 

sample times as short as a few milliseconds and 

longer, al 1 without dead time. 

In figure 1.5, oscillator 1 could be con- 

sidered under test and oscillator 2 could be 

considered the reference oscillator. These signals 

go to the ports of a pair of double balanced 

mixers. Another oscillator with separate symmetric 

buffered outputs is fed to the remaining other two 
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ports of the pair of double balanced mixers. This 

common oscillator's frequency is offset by a 

desired amount from the other two oscillators. 

Then two different beat frequencies come out of 

the two mixers as shown. These two beat frequen- 

cies will be out of phase by an amount proportional 

to the time difference between oscillator 1 and 

Z--excluding the differential phase shift that may 

be inserted. Further, the beat frequencies differ 

in frequency by an amount equal to the frequency 

difference between oscillators 1 and 2. 

This measurement technique is very useful 

where one has oscillator 1 and oscillator 2 on the 

same frequency. This is typical for atomic stan- 

dards (cesium, rubidium, and hydrogen frequency 

standards). 

Illustrated at the bottom of figure 1.5 is 

what might represent the beat frequencies out of 

the two mixers. A phase shifter may be inserted 

as illustrated to adjust the phase so that the two 

beat rates are nominally in phase; this adjustment 

sets up the nice condition that the noise of the 

common oscillator tends to cancel (for certain 

types of noise) when the time difference is deter- 

mined. After amplifying these beat signals, the 

start port of a time interval counter is triggered 

with the positive zero crossing of one beat and 

the stop port with the positive zero crossing of 

the other beat. Taking the time difference be- 

tween the zero crossings of these beat frequencies, 

one measures the time difference between oscillator 

1 and oscillator 2, but with a precision which has 

been amplified by the ratio of the carrier fre- 

quency to the beat frequency (over that normally 

achievable with this same time interval counter). 

The time difference x(i) for the ith measurement 

between oscillators 1 and 2 is given by eq (1.5). 

x(i) I at(r> - & + !L 
'b"o 0 “0 

(1.5) 

where At(i) is the ifh time difference as read on 

the counter, fb is the beat period, v. is the 

nominal carrier frequency, 0 is the phase delay in 

radians added to the signal of oscillator 1, and k 

is an integer to be determined in order to remove 

the cycle ambiguity. It is only important to know 

k if the absolute time difference is desired; for 

frequency and frequency stability measurements and 

for time fluctuation measurements, k may be assumed 

zero unless one goes through a cycle during a set 

of measurements. The fractional frequency can be 

derived in the normal way from the time fluctua- 

tions. 

yl ,(i, ~1 = 
. 1 

y(i, t) - v2(i, t) 
“0 

x(i + 1) - x(i 
K (1.6) 

f 1) - At(i 
Z 

tb "o 

In eqs (1.5) and (l-6), assumptions are made 

that the transfer (or common) oscillator is set at 

a lower frequency than oscillators 1 and 2, and 

that the voltage zero crossing of the beat v1 - vc 

starts and that vz - uc stops the time interval 

counter. The fractional frequency difference may 

be averaged over any integer multiple of rb: 

yl,2(ia mKb) = 
x(i + m) - x(i) 

mzb 
(1.7) 

where m is any positive integer. If needed, zb 

can be made to be very small by having very high 

beat frequencies. The transfer (or common) oscil- 

lator may be replaced with a low phase-noise 

frequency synthesizer, which derives its basic 

reference frequency from oscillator 2. In this 

set-up the nominal beat frequencies are simply 

given by the amount that the output frequency of 

the synthesizer is offset from vz. Sample times 

as short as a few milliseconds are easiliy ob- 

tained. Logging the data at such a rate can be a 

problem without special equipment. The latest NBS 

time scale measurement system is based on the OMTD 

and is yielding an excellent cost benefit ratio. 

C. Loose ohase lock loop method 

This first type of phase lock loop method is 

illustrated in figure 1.6. The signal from an 

oscillator under test is fed into one port of a 
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mixer. The signal from a reference oscillator is 

fed into the other port of this mixer. The signals 

are in quadrature, that is, they are 90 degrees out 

OUTPUT Of 
PlL FILTER 

FIGURE 1.6 

of phase so that the average voltage out of the 

mixer is nominally zero, and the instantaneous 

voltage fluctuations correspond to phase fluc- 

tuations rather than to amplitude fluctuations 

between the two signals. The mixer is a key 

element in the system. The advent of the Schottky 

barrier diode was a significant breakthrough in 

making low noise precision stability measurements. 

The output of this mixer is fed through a low pass 

filter and then amplified in a feedback loop, 

causing the voltage controlled oscillator (refer- 

ence) to be phase locked to the test oscillator. 

The attack time of the loop is adjusted such that 

a very loose phase lock (long time constant) 

condition exists. This is discussed later in 

section VIII. 

The attack time is the time it takes the 

servo system to make 70% of its ultimate correction 

after being slightly disturbed. The attack time 

is equal to l/nwh, where wh is the s4rvo bandwidth. 

If the attack time of the loop is about a second 

then the voltage fluctuations will be proportional 

to the phase fluctuations for sample tiaras shorter 

than the attack time. Depending on the coaffi- 

cient of the tuning capacitor and the quality of 

the oscillators involved, the amplification used 

may vary significantly but may typically range 

from 40 to 80 dB via a good low noisa amplifier. 

In turn this signal can be fed to a spccturm 

analyzer to measure the Fourier components of the 

phase fluctuations. This system of frequcncy- 

domain analysis is discussed in sections VIII to X. 

It is of particular us4 for sample times shorter 

than on4 s4cond (for Fourier frequencies greater 

than 1 Hz) in analyzing the characteristics of an 

oscillator. It is specifically very useful if one 

has discrete side bands such as 60Hz or detailed 

structure in the spectrum. How to characterize 

precision oscillators using this technique will be 

treated in detail later in section IX and XI. 

One may also take the output voltage from the 

above amplifier and feed it to an A/D converter. 

This digital output bacomes an extremely sensitive 

measure of the short term time or phase fluctua- 

tions between the two oscillators. Precisions of 

the order of a picosecond are easily achievable. 

D. Tight phase lock 1000 method 

The second type of phase lock loop method 

(shown in figure 1.7) is essentially the same as 

the first in figure 1.6 except that in this case 

the loop is in a tight phase lock condition; i.e., 

the attack time of the loop should be of the order 

of a few milliseconds. In such a case, the phase 

fluctuations are being integrated so that the 

voltage output is proportional to the frequency 

TIGHT PHASE.LOCK LOOP 
METHOD OF MEASURlN6 
FREUUENCY STABILITY 

FIGURE 1.7 

fluctuations between the two oscillators and is no 

longer proportional to the phase fluctuations for 

sample times longer than the attack time of the 

loop. A bias box is used to adjust the voltage on 

the varicap to a tuning point that is fairly 

linear and of a reasonable value. The voltage 
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fluctuations prior to the bias box (biased slightly 

away from zero) may be fed to a voltage to fre- 

quency converter which in turn is fed to a fre- 

quency counter where one may read out the frequency 

fluctuations with great amplification of the 

instabilities between this pair of oscillators. 

The frequency counter data are logged with a data 

logging device. The coefficient of the varicap 

and the coefficient of the voltage to frequency 

converter are used to determine the fractional 

frequency fluctuations, yi, between the oscil- 

lators, where i denotes the f 
th 

measurement as 

shown in figure 1.7. It is not difficult to 

achieve a sensitivity of a part in 10" per HZ 

resolution of the frequency counter, so one has 

excellent precision capabilities with this system. 

E. Time difference method 

The last measurement method we will illustrate 

is very commonly used, but typically does not have 

the measurement precision more readily available 

in the first four methods illustrated above. This 

method is called the time difference method. and 

is shown in figure 1.8. Because of the wide 

conversion, or multiplication factors. Caution 

should be exercised in using this technique even 

if adequate measurement precision is available 

because it is not uncommon to have significant 

instabilities in the frequency dividers shown in 

figure 1.8--of the order of several nanoseconds. 

The technology exists to build better frequency 

dividers than are cosssonly available, but manufac- 

turers have not yet availed themselves of state-of- 

the-art techniques in a cost beneficial manner. A 

trick to by-pass divider problems is to feed the 

oscillator signals directly into the time interval 

counter end’observe the zero voltage crossing into 

a well matched impedance. (In fact, in all of the 

above methods one needs to pay attention to impe- 

dance matching, cable lengths and types, and con- 

nectors). The divided signal can be used to 

resolve cycle ambiguity of the carrier, otherwise 

the carrier phase at zero volts may be used as the 

time reference. The slope of the signal at zero 

volts is 2nVp/t1, where t1 = l/u, (the period of 

oscillation). For VP = 1 volt and a 5 MHz signal, 

this slope is 3m volts/ns, which is a very good 

sensitivity. 

II. MEASUREMENT METHOOS COMPARISON 
nlmtrmc- 

When makina measurements between a oair of 

II I 
frequency standards or clocks, it is desirable to 

i' OSS.3SZ.lSS YI j 

IL 
)rr 1. asc, / have less noise in the measurement system than the 

/ 2 i 

y 1, 

composite noise in the pair of standards being 

! 
measured. This places stringent requirements on 

I measurement systems as the state-of-the-art of 

FIGURE 1.8 

bandwidth needed to measure fast rise-time pulses, 

this method is limited in signal-to-noise ratio. 

However, some counters are conmercfally available 

allowing one to do signal averaging or to do 

precision rise-time comparison (precision of time 

difference measurements in the range of 10 ns to 

10 ps are now available). Such a method yields a 

direct measurement of x(t) without any translation, 

precision frequency and time standards has advanced 

to its current level. As will be shown, perhaps 

one of the greatest areas of disparity between 

measurement system noise and the noise in current 

standards is in the area of time difference nea- 

surements. Couuiercial equipment can measure time 

differences to at best lo-1x5, but the time fluc- 

tuations second to second of state-of-the-art 

standards is as good as 10-13s. 

The disparity is unfortunate because if time 

differences between two standards could be measured 

with adequate precision then one may also know the 

time fluctuations, the frequency differences, and 

the frequency fluctuations. In fact, one can set 
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up an interesting hierarchy of kinds of measurement 

systems: 1) those that can measure time, x(t); 2) 

those that can measure changes in time or time 

fluctuations 6x(t); 3) those that can measure 

frequency, v(y s (v-vo)/vo); and 4) those that can 

measure changes in frequency or frequency flu&W 

tions. 6v (by a 6u/vo). As depicted in table 2.1, 

if a measurement system is of status 1 in this 

hierarchy, i.e., it can measure time, then time 

fluctuations, frequency and frequency fluctuations 

can be deduced. However, if a measurement system 

is only capable of measuring time fluctuations 

(status 2 - table 2.1), then time cannot be de- 

duced, but frequency and frequency fluctuations 

can. If frequency is being measured (status 3 - 

table 2.1), then neither time nor time fluctuations 

may be deduced with fidelity because essentially 

all commercial frequency measuring devices have 

"dead time" (technology is at a point where that 

is changing with fast data processing speeds that 

are now available). Dead time in a frequency 

measurement destroys the opportunity of integrating 

the fractional frequency to get to "true" time 

fluctuations. Of course, if frequency can be 

measured, then trivially one may deduce the fre- 

quency fluctuations. Finally, if as system can 

only measure frequency fluctuations (status 4 - 

table 2.1), then neither time, nor time fluctua- 

tions, nor frequency can be deduced from the data. 

If the frequency stability is the primary concern 

then one may be perfectly happy to employ such a 

measurement system, and similarly for the other 

statuses in this measurement hierarchy. Obviously, 

if a measurement method of Status 1 could be 

employed with state-of-the-art precision, this 

would provide the greatest flexibility in data 

processing. From section 1, the dual mixer time 

difference system is purported to be such a method. 

FIGURE 2.1 

are most appropriately applied. The large diago- 

nally oriented area indicates the typical noise 

limits of the measurement technique (at particular 

values of sample time indicated on the horizontal 

scale). 

III. CHARACTERIZATION 

Given a set of data of the fractional fre- 

quency or time fluctuations between a pair of 

oscillators, it is useful to characterize these 

fluctuations with reasonable and tractable models 

of performance. In so doing for many kinds of 

oscillators, it is useful to consider the flucua- 

tions as those that are random (may only be pre- 

dicted statistically) and those that are non- 

random (e.g., systematics- those that are environ- 

mentally induced or those that have a causal 

effect that can be determined and in many cases 

can be predicted). 

Table 2.2 is a comparison of these different 

measurement methods. The values entered are 

nominal; there may be unique situations where 

significant departures are observed. The time and 

frequency stabilities listed are the nominal 

second to second rms values. The accuracies 

listed are taken in an absolute sense. The costs 

listed are nominal estimates in 1981 dollars. 

3.1 Non-random Fluctuations 

Non-random fluctuations are usually the main 

cause of departure from "true" time or "true" 

frequency. 
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If, for example, one has the values of the 

frequency over a period of time and a frequency 

offset from nominal is observed, one may calculate 

directly that the phase error will accumulate as a 

ramp. If the frequency values show some linear 

drift then the time fluctuations will depart as a 

quadratic. In almost all oscillators, the above 

systematics, as they are sometimes called, are the 

primary cause of time andfor frequency departure. 

A useful approach to determine the value of the 

frequency offset is to calculate the simple mean 

of the set, or for determining the value of the 

frequency drift by calculating a linear least 

squares fit to the frequency. A least squares 

quadratic fit to the phase or to the time deriva- 

tive is typically not as efficient an estimator of 

the frequency drift for most oscillators. 

3.2 Random Fluctuations 

After calculating or estimating the systematic 

or non-random effects of a data set, these may be 

subtracted from the data leaving the residual 

random fluctuations. These can usually be best 

characterized statistically. It is often the case 

for precision oscillators that these random fluc- 

tuations may be well modeled with power law spcc- 

tral densities. This topic is discussed later in 

sections VIII to X. We have 

sym = hofo, (3.1) 

where Sy(f) is the one-sided spectral density of 

the fractional frequency fluctuations, f is the 

Fourier frequency at which the density is taken, 

ho is the intensity coefficient, and a is a number 

modeling the most appropriate power law for the 

data. It has been shown1'3 that in the time 

domain one can nicely represent a power law spec- 

tral density process using a well defined time- 

domain stability measure, uy(r), to be explained 

in the next section. for example, if one observes 

from a log oyz(t) versus T diagram a particular 

slope (call it u) over certain regions of sample 

time. K. this slope has a correspondence to a 

power law spectral density or a set of the same 

with some amplitude coefficient ha. In particular, 

p = -a -1 for -3 c a ~1 and u H -2 for 1 5 a. 

Further a correspondence exists between ha and the 

coefficient for uy(r>. These coefficients have 

been calculated and appear in section XI. The 

transformations for some of the more common power 

.law spectral densities have been tabulated making 

it quite easy to transform the frequency stability 

modeled in the time-domain over to the frequency 

domain and vice versa. Examples of some power-law 

spectra that have been simulated by computer are 

shown in figure 3.1. In descending order these 

POWCR MU SPECTRL 

FIGURE 3.1 

have been named white noise, flicker noise, random 

walk, and flicker walk (the w  in fig. 3.1 is 

angular Fourier frequency, 10 = 2nf). 

Once the noise characteristics have been 

determined, one is often able to deduce whether 

the oscillators are performing properly or not and 

whether they are meeting either the design speci- 

fications or the manufacturers specifications. 

For example a cesium beam frequency standard or a 

rubidium gas cell frequency standard when working 

properly should exhibit white frequency noise, 

which is the seme as random walk phase (or time) 

for tau values of the order of a few seconds to 

several thousand seconds (see also sec. XI). 

IV. ANALYSIS OF TIME DOMAIN DATA 

Suppose now that one is given the time or 

frequency fluctuations between a pair of precision 

oscillators measured, for example, by one of the 

techniques outlined in section I, and a stability 

analysis is desired. Let this comparison be 

depicted by figure 4.1. The minimum sample time 
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is determined by the measurement system. I? the 

time difference or the time fluctuations are 

available then the frequency or the fractional 

frequency fluctuations may be calculated from one 

period of sampling to the next over the data 

length as indiciated in figure 4.1. Suppose 

further there am H values of the ftactional 

frequency yi. Now there are many ways to analyze 

these data. Historically, people have typically 

used the standard deviation equation shown in 

figure 4.1, ostd dev (t), where i is the average 

fractional frequency 'over the data set and is 

subtracted from each value of y, before squaring, 

sufmning and dividing by the number of values minus 

one, (M-l), and taking the square root to get the 

standard deviation. At NBS, we have studied what 

happens to the standard deviation when the data 

set may be characterized by power law spectra 

which are more dispersive than classical white 

noise frequency fluctuations. In ottw words, if 

the fluctuations are characterized by flicker 

noise or any other non-white-noise frequency 

deviations, what hagpens to the standard deviation 

for that data set? One can show that the standard 

deviation is a function of the number of data 

points in the set; it is also a function of the 

dead time and of the measurement system bandwidth. 

For example, using flicker noise frequency modula- 

tion as a model, as the number of data points 

increases, the standard deviation monotonically 

increases without limit. Some statistical meesms 

have been developed which do not depend upon the 

data length and which are readily usable for 

characterizing the random fluctuations in precision 

oscillators. An IEEE subcoedttee on frequency 

stability has racouseended what has come to be 

known as the "Allan variance" taken from the set 

of useful variances developed, and an experimental 

estimation of the square root of the Allan vati- 

ante is shown as the bottom right equation in 

figure 4.1. This equation is very easy to imple- 

ment experimentally as one simply need add up the 

squares of the differences between adjacent values 

Of Yi* divide by the number of them and by two, and 

take the square root. One then has the quantity 

which the IEEE subcommittee has recosseended for 

specifizmn of stability in the time domairr- 

denotedbyny(r). 

where the brackets "<>I‘ denote infinite time 

avetage. In practice this is easily estimated 

from aCTMte data set as follows: 

1 

*1 4 
1 

oy(r) s - 2(M-1) 
=( 
itl yi+l - yi ' ' )I (4.2) 

where %he yi are the discrete frequency averages 

as illustrated in figure 4.1. 

FIGURE 4.1 

A simulated plot of the time fluctuations, x(t) 
between a pair of oscillators and of the corres- 
ponding fractional frequencies calculated from the 
time fluctuations each averaged over a sample time 
T. At the bottom are the equations for the stan- 
dard deviation (left) and for the time-domain 
measure of frequency stability as recoaacnded by 
the IEEE subcoeanittee on frequency stability 
(right). 

One would like to know how oy(r) varies with 

the sample time, t. A simple trick that one can 

use that is very useful if there is no dead time, 

is to average the previous values for yl and y2 

and call that a new y1 averaged over 2r, similarly 

average the previous values for yj and y4 and call 

that a new y2 averaged over 2~ etc., and finally 

apply the same equation as before to get oy(2~). 

One can repeat this process for other desired 

integer multiples of t and from the same data Set 
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be able to generate values for uy(mr) as a function 

of mt from which one may be able to infer a model 

for the process that is characteristic of this 

pair of oscillators. If one has dead time in the 

measurements adjacent pairs cannot be averaged in 

an unambiguous way to simply increase the sample 

time. One has to retake the data for each new 

sample time--often a very time consuming task. 

This is another instance where dead time can be a 

problem. 

How the classical variance (standard deviation 

squared) depends on the number of samples is shown 

in figure 4.2. Plotted is the ratio of the stan- 

dard deviation squared for N samples to the stan- 

dard deviation squared for 2 samples; &(2,r)> is 

the same as the Allan variance, uya(r). One can 

see the dependence o'f the standard deviation upon 

the number of samples for various kinds of Dower 

FIGURE 4.2 

The ratio of the time average of the standard 
deviation squared for N samples over the time 
average of a two sample standard deviation squared 
as a function of the number of smaplcs, N. The 
ratio is plotted for various power law spectral 
densities that commonly occur in precision oscil- 
lators. The figure illustrates one reason why the 
standard deviation is not a convenient measure of 
frequency stability; i.e. it may be very important 
to specify how many data points are in a data set 
if you use the standard deviation. 

law spectral densities commonly encountered as 

reasonable models for many important precision 

oscillators. Note, crya has the same value as 

the classical variance for the classical noise 

case (white noise FM). One main point of figure 

4.2 is simply to show that with the increasing 

data length the standard deviation of the coamton 

classical variance is not well behaved for the 

kinds of noise processes that are very often 

encountered in most of the precision oscillators 

of interest. 

One may combine eq (1.4) and eq (4.l);which 

yields an equation for cry(r) in terms of the time 

difference or time deviation measurements. 

uyw = 47 r' (x(t+tr) - 2xtt+r1 + x(t))* 
> 

+ . 

(4.3) 

which for N discrete time readings may be estimated 

as, 

uy(r) a 

[ 
‘&2 8 (‘i+2 - 2xi+l + ‘f)’ 

I 

+ ’ 

(4.4) 

where the i denotes the number of the reading in 

the set of N and the nominal spacing between 

readings is T. If there is no dead time in the 

data and the original data were taken with the x's 

Spaced by 'co, we can pick t in eq (4.4) to 

be any integer multiple of to, i.e., t = mto: 

Equation (4.5) has some interesting consequences 

because of the efficient data usage in terms of 

the confidence of the estimate as will be explained 

in the next section. 

EXAMPLE: Find the Allan variance, uy*(l), of the 

following sequence of fractional fre- 

quency fluctuation values yk, each value 

averaged over one"sicond. 

y1 
= 4.36 x 10-s 

Y5 
= 4.47 x 10-s 

y2 
= 4.61 x 10-s 

y6 
= 3.96 x 1O-s 

y3 = 3.19 x 10-s y7 = 4.10 x 10-s 

y4 = 4.21 x 10-s yg = 3.08 x 10-s 

(assume no dead-time in measurement of averages) 
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Since each average of the fractional frequency 

fluctuation values is for one second, then the 

first variance calculation will be at 'c = 1s. We 

are given H = 6 (eight values); therefore, the 

number of pairs in sequence is M-l- 7. We have: 

oata V4lWS 
yt (1 IO-‘) 

Pint a~ffmncas 
(r c+1 - Yk) (I lo”‘) 

rlrst aiffa- sauma 

%il - yp (L lo-'@) 

4.36 
4.61 
3.u 
4.21 
4.47 
I.% 
4.10 
3.06 

-- 
0.23 

-l.42 

;:ii 
-0.61 

0.14 
-1.02 

0.06 
2.02 
1.01 
0.07 
0.26 
0.02 

-if+ 

g (yk+l - yk)2 = 4.51 x 10-10 

Therefore, 

uG(ls) = 
4.51 x 10-10 

2(7) 
= 3.2 x 10-11 

and 

uy(z) = [o;(ls)]' = C3.2 x lo-=]+ = 5.6 x 1O-8 

Using the same data, one can calculate the 

variance for s = 2s by averaging pairs'of adjacent 

values and using these new averages as data values 

for the same procedure as above. For three second 

averages (t = 3s) take adjacent threesomes and 

find their averages and proceed in a similiar 

manner. More data must be acquired for longer 

averaging times. 

One sees that with large numbers of data 

values, it is helpful to use a computer or program- 

mable calculator. The confidence of the estimate 

on uy(t) improves nominally as the square root of 

the number of data values used. In this example, 

M=6 and the confidence can be expressed as being 

no better the Uflx 100% = 35%. This then is the 

allowable error in our estimate for the f = Is 

average. The next section shows methods of com- 

puting and improving the confidence interval. 

V. CONFIDENCE OF THE ESTIMATE AND OVERLAPPING 

SAMPLES4 

One can imagine taking three phase or time 

measurements of one oscillator relative to another 

at equally spaced intervals of time. From this 

phase data one can obtain two, adjacent values of 

average frequency. From these two frequency mea- 

surements, one can calculate a single sample Allan 

(or two-sample) variance (see fig. 5.1). Of 

course this variance does not have high precision 

or confidence since it is based on only one fre- 

quency difference. 

FIGURE 5.1 

Statisticians have considered this problem of 

quantifying the variability of quantities like the 

Allan Variance. Conceptually, one could imagine 

repeating the above experiment (of taking the 

three phase points and calculating the Allan 

Variance), many times and even calculating the 

distribution of the values. 

For the above cited experiment we know that 

the results are distributed like the statistician's 

chi-square distribution with one degree of freedom. 

That is, we know that for most common oscillators 

the first difference of the frequency is a normally 

distributed variable with the typical bell-shaped 

curve and zero mean. However, the square of a 

normally distributed variable is NOT normally 

distributed. That is easy to see since the square 

is always positive and the normal curve is com- 

pletely syumnetric and negative values are as 

likely as positibe. The resulting dfstribution is 

called a chi-square distribution, and ft has ONE 

"degree of freedom" since the distribution was 

obtained by considering the squares of individual 

(i.e., one independent sample), normally distri- 

buted variables. 

In contrast, if we took five phase values, 

then we could calculate four consecutive frequency 

values, as in figure 5.2. We could then take the 
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FIGURE 5.2 

first pair and calculate a sample Allan Variance, 

and we could calculate a second sample Allan 

Variance from the second pair (i.e., the third and 

fourth frequency measurements). The average of 

these two sample Allan Variances provides an 

improved estimate of the "true" Allan Variance, 

and we would expect it to have a tighter confidence 

interval than in the previous example. This could 

be expressed with the aid of the chi-square distri- 

bution with TWO degrees of freedom. 

However. there is another option. We could 

also consider the sample Allan Variance obtained 

from the second and third frequency measurements. 

That is the middle sample variance. Now, however, 

we're in trouble because clearly this last sample 

Allan Variance is NOT independent of the other 

two. Indeed, it is made up of parts of each of 

the other two. This does NOT mean that we can't 

use it for improving our estimate of the "true" 

Allan Variance, but it does mean that we can't 

just assume that the new average of three sample 

Allan Variances is distributed as chi-square with 

three degrees of freedom. Indeed, we will en- 

counter chi-square distributions with fractional 

degrees of freedom. And as one might expect, the 

number of degrees of freedom will depend upon the 

underlying noise type, that is, white FM, flicker 

FM, or whatever. 

Before going on with this, it is of value to 

review some concepts of the chi-square distri- 

bution. Sample variances (like sample Allan 

Variances) are distributed according to the equa- 

tion: 

where S* is the sample Allan Variance, x2 is 

chi-square, d.f. is the number of degrees of 

freedom (possibly not an integer), and 02 is the 

"true" Allan Variance we're all interested in 

knowing--but can only estimate imperfectly. 

Chi-square is a random variable and its distri- 

bution has been studied extensively. For some 

reason, chi-square is defined so that d.f., the 

number of degrees of freedom, appears explicitly 

in eq (5.1). Still, X* is a (implicit) 

function of d.f., also. 

The probability density for the chi-square 

distribution is given by the relation 

P(X') = 
1 

2d.f. r d.f. 

c ) 

(5.2) 
2 

is the gamma function, defined by 

the integral 

= r (t) = I, x t-1 e-x dx 
(5.3) 

Chi-square distributions are useful in deter 

mining specified confidence intervals for variances 

and standard deviations. Here is an example. 

Suppose we have a sample variance s* = 3.0 and we 

know that this variance has 10 degrees of freedom. 

(Just how we can know the degrees of freedom will 

be discussed shortly.) Suppose also that we Want 

to know a range around our sample value of s* = 3.0 

which "probably" contains the true value, 02. The 

desired confidence is, say, 90%. That is, 10% of 

the time the true value will actually fall outside 

of the stated bounds. The usual way to proceed is 

to allocate 5% to the low end and 5% to the high 

end for errors, leaving our 90% in the middle. 

This is arbitrary and a specific problem might 

dictate a different allocation. We now resort to 

tables of the chi-square distribution and find 

that for 10 degrees of freedom the 5% and 95% 

points correspond to: 

x2(.05) = 3.94 

for d.f. = 10 (5.4) 

x*(.95> = 18.3 
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Thus, with 90% probability the calculated sample 

variance, $2, satisfies the inequality: 

(5.5) 

and this inequality can be rearranged in the form 

1.64 5 u2 2 7.61 (5.6) 

or, taking square roots: 

1.28 2 u 5 2.76 

Now someone might 

(5.7) 

object to the form of 

eq (5.7) since it seems to be saying that 

the true sigma falls within two limits with 90% 

probability. Of course, this is either true or 

not and is not subject to a probabilistic inter- 

pretation. Actually eq (5.7) is based on 

the idea that the true sigma is not known and we 

estimate it with the square root of a sample 

variance, 52. This sample variance is a random 

variable and is properly the subject of probabil- 

ity, and its value (which happened to be 3.0 in 

the example) will conform to eq (5.7) nine 

times out of ten. 

Typically, the sample variance is calculated 

from a data sample using the relation: 

s2 = & n$l (x n- 3’ 

where it is implicitly assumed that the x,,'s are 

random and uncorrelated (i.e., white) and where ; 

is the sample mean calculated from the same data 

set. If all of this is true, then 52 is chi-square 

distributed and has N-l degrees of freedom. 

Thus, for the case of white x,, and a conven- 

tional sample variance (i.e., eq (5.8)), the 

number of degrees of freedom are given by the 

equation: 

d-f. = N-l (5.9) 

The problem of interest here is to obtain the 

corresponding equations for Allan Variances using 

overlapping estimates on various types of noise 

(i.e., white FM, flicker FM, etc.). 

Other authors (Lesage and Audoin, and 

Yoshimura) have considered the question of the 

variance of the Allan Variances without regard to 

the distributions. This is, of course, a closely 

related problem and use will be made of their 

results. These authors considered a more restric- 

tive set of overlapping estimates than will be 

considered here, however. 

VI. MAXIMAL USE OF THE OATA AND DETERMINATION OF 

THE DEGREES OF FREEDOM. 

6.1 Use of Data 

Consider the case of two oscillators being 

compared in phase and exactly N values of the 

phase difference are obtained. Assume that the 

data are taken at equally spaced intervals, 'ho. 

From these N phase values, one can obtain N-l 

consecutive values of average frequency and from 

these one can compute N-2 individual, sample Allan 

Variances (not all independent) for 'I: = to. These 

N-2 values can be averaged to obtain an estimate 

of the Allan Variance at t = to. The variance of 

this variance has been calculated by the above 

cited authors. 

Using the same set of data, it is also possi- 

ble to estimate the Allan Variances for integer 

multiples of the base sampling interval, t = nt,. 

Now the possibilities for overlapping sample Allan 

Variances are even greater. For a phase data set 

of N points one can obtain exactly N-2n sample 

Allan Variances for t f nto. Of course only a 

fraction of these are generally independent. 

Still the use of ALL of the data is well justified 

(see fig. 6.1). 

Consider the case of.an experiment extending 

for several weeks in duration with the aim of 

getting estimates of the Allan Variance for tau 

values equal to a week or more. As always the 

purpose is to estimate reliably the "true" Allan 

Variance as well as possible--that is, with as 

tight an uncertainty as possible. Thus one wants 
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FIGURE 6.1 

to use the data as efficiently as possible since 

obtaining more data can be very expensive. The 

most efficient use is to average all possible 

. sample Allan Variances of a given tau value that 

one can compute from the data. 

The problem comes in estimating how tight the 

confidence intervals really are-that is, in esti- 

mating the number of drgrees of freedom. Clearly, 

if one estimates the confidence intervals pessimi- 

stically, then more data is needed to reach a 

specified tolerance, and that can be expensive. 

The other error of over-confidence in a question- 

able value can be even more expensive. Ideally, 

one has realistic confidence estimates for the 

most efficient use of the data, which is the 

intent of this writing. 

6.2 Determininq the Degrees of Freedom 

In principle, it should be possible to deter 

mine analytically the equations corresponding to 

eq (5.9) for all cases of interest. Unfor 

tunately the analysis becomes quite complicated. 

Exact computer algorithms were devised for the 

cases of white phase noise, white frequency modu- 

lation and random walk fM. For the two flicker 

cases (i.e., flicker FM and PM) a completely 

empirical approach was used. Due to the complexity 

of the computer programs, empirical fits were 

devised for all five noise types. 

The approach used is based on three equations 

relating to the chi-square distribution: 

(6.11 

E[xa] = d.f. (6.2) 

Var[$] = 2(d.f.) (6.31 

where the expression E[xs] means the "expectation," 

or average value of x, VarW] is the variance of 

~2, and d.f. is the number of degrees of freedom. 

A computer was -used to simulate phase data 

sets of some length, N, and then Allan Variances 

with t=nTo were calculated for all possible 

samples. This "experiment" was repeated at least 

1000 times using new simulated data sets of the 

same spectral type, and always of the same length, 

N. Since the data were simulated on a computer, 

the "true" Allan Variance 9 u2 , was known for many 

of the noise models and could be substituted into 

eq (6.1). From the 1000 values of s2/ua, distri- 

butions and sample variances were obtained. The 

"experimental" distributions were compared with 

theoretical distributions to verify that the 

observed distributions truely conformed to the 

chi-square distribution. 

The actual calculation of the degrees of 

freedom were made using the relation: 

which can be deduced from eqs (6.1). (6.2). 

and (6.3). The Var(sa) was estimated by the 

sample variance of the 1000 values of the average 

Al lan Variances, each obtained from a phase data 

set of length N. 

Of course this had to be repeated for various 

values,of N and n, as well as for each of the five 

cotmuon noise types: white PM, flicker PM, white 

FM, flicker FM, and random walk FM. Fortunately, 

certain limiting values are known and these can be 

used as checks on the method. For example, when 

(N-1)/T-n, only one Allan Variance is obtained 

from each data set and one should get about one 

degree of freedom for eq (6.4), which was observed 
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in fact. Also for n=l the "experimental* condi- 

tions correspond to those used by Lesage and 

Audoin, and by Yoshimura. Indeed, the method also 

was tested by verifying that it gave results 

consistent with eq (5.9) when applied to the 

conventional sample variance. Thus, combining eq 

(6.4) with the equations for the variance of the 

Allan Variances from Lesage and Audoin and 

Yos'himura, one obtains: 

White PM d.f. = ,w , for N ?, 4 

Flicker PM d.f. = ? 

White FM (6.5) 

Flicker FM d.f. = 

Random Walk FM d. f. = N-Z 

for n=l. Unfortunately, their results are not 

totally consistent with each other. Where incon- 

sistency arose the value in best agreement with 

the "experimental" results was chosen. 

The empirical equations which were fit to the 

"experimental" data and the known values are 

summarized below: 

White PM 

Flicker PM 

White FM 

Flicker FM 

de f. ; IN+l)(N-2nl 
2(N-n) 

d.f. P exp In F In J2n+a)(N-1) 
> 

d-f. I 

2(N-2) 
2.3N - 4.9' 'Or IF1 

d.f. I 

I -6, for n 2 2 

Random Walk FM d.f. z y jv 

The figures in Appendix I demonstrate the fit to 

the "experimental" data. 

It is appropriate to give some estimate of 

just how well these empirical equations approach 

the "true" values. The equations have approxi- 

mately (a few percent) the correct assymptotic 

behavior at n=l and n=(N-1)/2. In between, the 

values were tested (using the simulation results) 

over the range of N=S to F(r1025 for ~1 to 

&N-1)/2 changing by octaves. In general, the 

fit was good to within a few percent. We must 

acknowledge that distributional problems with the 

random number generators can cause problems, 

although there were several known values which 

should have revealed these problems if they are 

present. Also for three of the noise types the 

exact number of degrees of freedom were, calculated 

for many values of N and n and compared with the 

"Monte Carlo" calculations. The results were all 

very good. 

Appendix I presents the data in graphical 

form. All values are thought to be accurate to 

within one percent or better for the cases of 

white PM, white FM, and random walk FM. A larger 

tolerence should be allowed for the flicker cases. 

VII. EXAMPLE OF TIME-DOMAIN SIGNAL PROCESSING AN0 

ANALYSIS 

We will analyze in some detail a commercial 

portable clock, Serial No. 102. This cesium was 

measured against another commercial cesium whose 

stability was well documented and verified to be 

better than the one under test. Plotted in figure 

7.1 are the residual time deviations after removing 

FIGURE 7.1 

17 

TN-30 

Notes and Errata
See item 38 on the first Errata page for two corrections.  Click on the link for this equation to go there.



a mean frequency of 4.01 parts in 1013. Applying 

the methods described in section IV and section V, 

we generated the a,(r) diagram shown in figure 

7.2. 

FIGURE 7.2 

One observes that the last two points are propor 

tional to t +1 and one is suspicious of a signifi- 

cant frequency drift. 

If one calculates the drift knowing that 

up is equal to the drift times & a drift of 

1.22 x 10-l' per day is obtained. A linear least 

squares to the frequency was removed and sections 

FIGURE 7.3 

FIGURE 7.4 

IV and V were applied again. The linear least 

squares fit showed a drift of 1.23 x 10-l' per 

day, which is in excellent agreement with the 

previous calculated value obtained from uyy(z). 

Typically, the linear least squares will give a 

much better estimate of the linear frequency drift 

than will the estimate from Us being propor- -\ 
-. 

+1 tional to t . 
d9J 

1 3 
b E/i: 

Figure 7.3 gives the plot of the time resid- f 

uals after removing the linear least squares and 

figure 7.4 is the corresponding uy(t) vs. t dia- 

gram. From the 33 days of data, we have used the &jl’ L 1 

90% confidence interval to bracket the stability u? Id d Id 

estimates and one sees a reasonable fit corres- 
s lwc,ti3 

ponding to white noise frequency modulation at a 

level of 4.4 x lo-l1 T'+. This seemed excessive FIGURE 7.5 
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in terms of the typical performance of this par- 

ticular cerium and in as much as we were doing 

some other testing within the environment, such as 

working on power supplies and charging and dis- 

charging batteries, we did some later tests. 

Figure 7.5 is a plot of uy('~) after the standard 

had been left alone in a quiet environment and had 

been allowed to age for about a week. One ob- 

serves that the white noise frequency modulation 

level is more than a factor of 4 ilrproved over the 

previous data. This led us to do SO(M studies on 

the effects of the power supply on the cesium fre- 

quency as one is charging and discharging bat- 

teries, which proved to be significant. One 

notices in figure 7.4 that the uy(r) values plotted 

are consistent within the error bars with flicker 

noise frequency modulation. This is more typical 

of the kind of noise one would expect due to such 

anvirornnental perturbations as discussed above. 

Careful time- and/or frequency-domain analy- 

ses can lead to significant insights into problems 

and their solutions and is highly recommended by 

the authors., The frequency-domain techniques will 

be next approached. 

VIII. SPECTRUM ANALYSIS 

Another method of characterizing the noise in 

a signal source is by means of spectrum analysis. 

To understand this approach, let's examine the 

wavefona shown in figure 8.1. 

FIGURE 8.1 

Here we have a sine wave which is perturbed 

for short instances by noise. Some loosely refer 

to these types of noises as "glitches". The 

waveform has a nominal frequency over one cycle 

which we'll call "YC" (UC = $1. At times, noise 

causes the instantaneous frequency to differ 

markedly from the nominal frequency. If a pure 

Sine wave Signal of frequency vO is subtracted 

from this waveform, the remainder is the sum of 

the noise components. These components are of a 

variety of frequencies and the sum of their ampli- 

tudes 

during 

tarily 

ically 

is nearly zero except for the intervals 

each glitch when their amplitudes momen- 

reinforce each other. This is shown graph- 

in figure 8.2. 

,-- 

sDcsuyI&QNQsE,II 

FIGURE 8.2 

One can plot a graph showing MIS power vs. 

frequency for a given signal. This kind of plot 

is called the power spectrum. For the waveform of 

figure 8.1 the power spectrum will have a high 

value at UC and will have lower values for the 

signals produced by the glitches. Closer analysis 

reveals that there is a recognizable, somewhat 

constant repetition rate associated with the 

glitches. In fact, we can deduce that there is a 

significant amount of power in another signal 

whose period is the period of the glitches as 

shown in figure 8.2. Let's call the frequency of 

the glitches vs. Since this is the case, we will 

observe a noticeable amount of power in the spec- 

trum at us with an amplitude which is related to 

the characteristics of the glitches. The power 

spectrum shown in figure 8.3 has this feature. A 

predominant us component has been depicted, but 

other harmonics also exist. 

FIGURE 8.3 
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Some noise will cause the instantaneous fre- 

quency to "jitter" around ~0, with probability of 

being higher or lower than ug. We thus usually 

find a "pedestal" associated with vg as shown in 

figure 8.4. 

FIGURE 8.4 

0 

The process of breaking down a signal into 

all of its various components of frequency is 

called Fourier exoansion (see sec. X). In 

other words, the addition of all the frequency 

components, called Fourier frequency components, 

produces the original signal. The value of a 

Fourier frequency is the difference between the 

frequency component and the fundamental frequency. 

The power spectrum can be normalized to unity such 

that the total area under the curve equals one. 

The power spectrum normalized in this way is the 

power soectral density. 

The power spectrum, often called the RF 

spectrum, of V(t) is very useful in many appli- 

cations. Unfortunately, if one is given the RF 

spectrum, it is impossible to determine whether 

the power at different Fourier frequencies is a 

result of amplitude fluctuations "e(t)" or phase 

fluctuations "e(t). The RF spectrum can be separ- 

ated into two independent spectra, one being the 

spectral density e "s(t)" often called the AM 

power spectral density and the other being the 

soectral density of "O(t)". 

For the purposes here, the phase-fluctuation 

components are the ones of interest. The spectral 

density of phase fluctuations is denoted by Se(f) 

where “f" is Fourier frequency. For the fre- 

quently encountered case where the AM power spec- 

tral density is negligibly small and the total 

modulation of the phase fluctuations is small 

(mean-square value is much less than one rad'), 

the RF spectrum has approximately the same shape 

as the phase spectral density. However, a main 

difference in the representation is that the RF 

spectrum includes the fundamental signal (car- 

rier), and the phase spectral density does not. 

Another major difference is that the RF spectrum 

is a dower spectral density and is measured in 

units of watts/hertz. The phase spectral density 

involves no "power" measurement of the electrical 

signal. The units are radians2/hertz. It is 

tempting to think of So(f) as a "power" spectral 

density because in practice it is measured by 

passing V(t) through a phase detector and measuring 

the detector's output power spectrum. The measure- 

ment technique makes use of the relation that for 

small deviations (6e CC 1 radian), 

V ms (f) 
sp = " ( > 2 

S 
(8.3) 

where Vrms (f) is the root-mean-square noise.voltage 

per m at a Fourier frequency "f", and Vs is the 

sensitivity (volts per radian) at the phase quadra- 

ture output of a phase detector which is comparing 

the two oscillators. In the next section, we will 

look at a scheme for directly measuring Se(f). 

One question we might ask is, "How do fre- 

quency changes relate to phase fluctuations?" 

After all it's the frequency stability of an 

oscillator that is a major consideration in many 

applications. The frequency is equal to a rate of 

change in the phase of a sine wave. This tells us 

that fluctuations in an oscillator's output fre- 

quency are related to phase fluctuations since we 

must change the rate of "e(t)" to accomplish a 

shift in "u(t)", the frequency at time t. A rate 

of change of total "@T(t)" is denoted by %T(t)". 

We have then 

2nvct1 = 4T(t) (8.4) 

The dot denotes the mathematical operation of 

differentiation on the function eT with respect to 

its independent variable t.* From eq (8.4) 

* As an analogy, the same operation relates the 

position of an object with its velocity. 
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and cq (1.1) we get 

Rearranging, we have 

OP 

The quantity u(t) - v0 can be more conveniently 

denoted as au(t), a change in frequency at time t. 

Equation (8.5) tells us that if.we differentiate 

the phase fluctuations o(t) and divide by 2n, we 

will have calculated the frequency fluctuation 

au(t). Rather than specifying a frequency fluc- 

tuation in terms of shift in frequency, it is 

useful to denote au(t) with respect to the nominal 

frequency v0. The quantity y is called the 

fractional frequency fluctuation** at time t and 

is signified by the variable y(t). We have 

y(t) = yl = !i!g 
0 

(8.6) 

The fractional frequency fluctuation y(t) is 

a dimensionless quantity. When talking about fre- 

quency stability, its appropriateness becomes 

clearer if we consider the following example. 

Suppose in two oicillators au(t) is consistently 

equal to + 1 Hz and we have sampled this value for 

many times t. Are the two oscillators equal in 

their ability 'to produce their desired output 

frequencies? Not if one oscillator is operating 

at 10 Hz and the other at 10 MHz. In one case, 

the average value of the fractional frequency 

fluctuation is l/10, and in the second case is 

1/10,000,000 or 1 x lo-'. The 10 MHz oscillator 

is then more precise. If frequencies are nulti- 

plied or divided using ideal electronics, the 

fractional stability is not changed. 

In the frequency domain, we can measure the 

spectrum of frequency fluctuations y(t). The 

** Some international recommendations replace 

"fractional" by "normalized". 

spectral density of frequency fluctuations is 

denoted by Sy(f) and is obtained by passing the 

signal from an oscillator through an ideal FM 

detector and performing spectral analysis on the 

resultant output voltage. Sy(f) has dimensions of 

{fractional frequency)2/Hz or Hz-l. Oifferentia- 

tion of e(t) corresponds to multiplication by 2 
"0 

in terms of spectral densities. With further cal- 

culation, one can derive that 

( ) 
2 

Sy(f) = f 
0 

sp 

We will address ourselves primarily to So(f), that 

is, the spectral density of phase fluctuations. 

For noise-measurement purposes, S,(f) can be 

measured with a straightforward, easily duplicated 

equipment set-up. Whether one measures phase or 

frequency spectral densities is of minor importance 

since they bear a direct relationship. It is 

important, however, to make the distinction and to 

use eq (8.7) if necessary. 

8.1 The Loose Phase-Locked Loop 

Section I, 1.1, C described a method of 

measuring phase fluctuations between two phase- 

locked oscillators. Now we will detail the pro- 

cedure for measuring So(f). 

Suppose we have a noisy oscillator. We wish 

to measure the oscillator's phase fluctuations 

relative to nominal phase. One can do this by 

phaselocking another oscillator (called the re- 

ference oscillator) to the test oscillator and 

mixing the two oscillator signals 90' out of phase 

(phase quadrature). This is shown schematically 

in figure 8.9. The two oscillators are at the 

same frequency in long term as guaranteed by the 

phase-lock loop (PLL). A low-pass filter (to 

filter the R.F. sum component) is used after the 

mixer since the difference (baseband) signal is 

the one of interest. By holding the two signals 

at a relative phase difference of 90°, short-term 

phase fluctuations between the test and reference 

oscillators will appear as voltage fluctuations 

out of the mixer. 
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FIGURE 8.9 

With a PLL, if WC can make the servo time 

constant very long, then the PLL bandwidth as a 

filter will be small. This may be done by lowering 

the gain Av of the loop amplifier. We want to 

translate the phase modulation spectrum to base- 

band spectrum so that it is easily measured on a 

low frequency spectrum analyzer. With a PLL 

filter, we must keeo in mind that the reference 

oscillator snould be as good or better than the 

test oscillator. This is because the output of 

the PLL represents the noise from both oscillators, 

and if not properly chosen, the reference can have 

noise masking the noise from the test oscillator. 

Often, the reference and test oscillators are of 

the same type and have, therefore, approximately 

the same noise. We can acquire a meaningful 

measurement by noting that the noise we measure is 

from two oscillators. Many times a good approxi- 

mation is to assume that the noise power is twice 

that which is associated with one oscillator. 

So(f) is general notation depicting spectral den- 

sity on a per hertz basis. A PLL filter output 

necessarily yields noise from two oscillators. 

The output of the PLL filter at Fourier 

frequencies above the loop bandwidth is a voltage 

representing phase fluctuations between reference. 

and test oscillator. It is necessary to make the 

time-constant of the loop long compared with the 

inverse of the lowest Fourier frequency we wi sh to 

measure. That is, tc > b f 
1 

(lowestf' This means 

that if we want to measure So(f) down to 1 Hz, the 

loop time-constant must be greater than & se- 

conds. One can measure the time-constant by 

perturbing the loop (momentarily disconnecting the 

battery is convenient) and noting the time it 

takes for the control voltage to reach 70% of its 

final value. The signal from the mixer can then 

be inserted into a spectrum analyzer. A preamp 

may be necessary before the spectrum analyzer. 

l See Appendix Note X 3 

The analyzer determines the mean square volts that 

pass through the analyzer's bandwidth centered 

around a pre-chosen Fourier frequency f. It is 

desireable to normalize results to a 1 Hz band- 

width. Assuming white phase noise (white PM), 

this can be done by dividing the mean square 

voltage by the analyzer bandwidth in Hz. One may 

have to approximate for other noise processes. 

(The phase noise sideband levels will usually be 

indicated in rms volts-per-root-Hertz on mOSt 

analyzers. ) 

8.2 m 

Measurements 

(1) Low-noise mixer 

This should be a high quality, double- 

balanced type, but single-ended types 

may be used. The oscillators should 

have well-buffered outputs to be able to 

isolate the coupling between the two 

input RF ports of the mixer. Results 4rtrF 

that are too good may be obtained if the 

two oscillators couple tightly via 

signal injection through the input 

ports. We want the PLL to control 

locking. One should read the specifi- 

cations in order to prevent exceeding 

the maximum allowable input power to the 

mixer. It is best to operate near the 

maximum for best signal-to-noise out of 

the IF port of the mixer and, in some 

cases, it is possible to drive the,mixer 

into saturation without burning out the 

device. 

FIGURE 8.10 

(2) Low-noise DC amplifier 

The amount of gain AV needed in the loop 

amplifier will depend on the amplitude 

of the mixer output and the degree of 

l * See Appendix Note X 4 
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varactor control in the reference oscil- 

lator. Ue may need only a raall amount 

of gain to acquire lock. On the other 

hand, it may be necessary to add as much 

as 80 dB of gain. Good low-noise DC 

amplifiers are available from a number 

of sources, and with cascading stages of 

amplification, each contributing noise, 

it will be the noise of the first stage 

which will add most significantly to the 

noise being measured. If a suitable 
low-noise first-stage amplifier is not 

readily available, a schematic of an 

amplifier with 40 dB of gain is shown in 

figure 8.11 which will sewe nicely for 

the first stage. Amplifiers with very 

low equivalent input noise performance 

are also available from many manufac- 

turers. The response of the amplifier 

should be flat from DC to the highest 

Fourier frequency one wishes to measure, 

The loop time-constant is inversely 

related to the gain AV and the deteni- 

nation of AV is best made by experimen- 
l 

tation knowing that TV < bf ~owesr~. 

FIGURE 8.11 

(3) Voltaqe-controlled reference quartz 
: . 

oscillator 

The signal analyzer typically should be 

capable of measuring the noise in rms 

volts in a narrow bandwidth from near 

1 Hz to the highest Fourier frequency 

of interest. This may be 50 kHt for 

carrier frequencies of 10 MHz or lower. 

For voltage measuring analyzers, it is 

typical to use units of "volts per mu. 

The spectrum analyzer and any associated 

input amplifier will exhibit high-fre- 

quency rolloff. The Fourier frequency 

at which the voltage has dropped by 3 dB 

is the measurement system bandwidth fh, 

or uh = 2nf h' This can be measured 

directly with a variable signal gener- 

ator. 

This oscillator should be a good one Section X describes how analysis can be 

with specifications available on its performed using a discrete fourier transform 

frequency domain stability. The refer- analyser. hpanding digital technology has made 

ence should be no worse than the test the use of fast-fourier transform analysis affor- 

oscillator. The varactor control should dable and compact. 

*!keAppendixNote#S 

* 

be sufficient to maintain phase-lock of 

the reference. In general, low quality 

test oscillators w  have varactor 

control of as much as 1 x lo-* fractional 

frequency change per volt. Some provi- 

sion should be available on the reference 

oscillator for tuning the mean frequency 

over a frequency range that will enable 

phase-lock. Many factors enter into the 

choice of the reference oscillator, and 

often it is convenient to simply use two 

test oscillators phase-locked together. 

In this way, one can assume that the 

noise out of the PLL filter is no worse 

than 3 dB greater than the noise from 

each oscillator. If it is uncertain 

that both oscillators are contributing 

approximately equal noise, then one 

should perform measurements on three 

oscillators taking two at a time. The 

noisier-than-average oscillator will 

reveal itself. 

(4) Spectrum analyzer 
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Rather than measure the spectral density of 

phase fluctuations between two OSCillUtOrS, it iS 

possible to measure the phase fluCtUatiOnS intro- 

duced by a device such as an active filter or 

amplifier. Only a slight modification of the 

existing PLL filter equipment set up is needed. 

The scheme is shown in figure 8.12. 

LJUW'ta TO MASURf llTRIIlSlC NOlSf Of SIT-UP 

FIGURE 8.12 

Figure 8.12 is a differential phaSe noise 

measurement set-up. The output of the reference 

oscillator is split so that part of the signal 

passes through the device under test. We want the 

two signals going to the mixer to be 90“ out of 

phase, thus, phase fluctuations between the two 

input ports cause voltage fluctuations at the 

output. The voltage fluctuations then can be 

measured at various Fourier frequencies on a 

spectrum analyzer. 

To estimate the noise inherent in the test 

srt-up, one can in principle bypass the device 

under test and compensate for any change in ampli- 

tude and phase at the mixer. The PLL filter 

technique must be converted to a differential 

phase noise technique in order to measure inherent 

test equipment noise. It is a good oractice to 

measure the system noise before proceeding to mea- 

surement of device noise. 

A frequency domain measurement 

shown schematically in figure 8.13. The 

set-up is 

component 

values for the low-pass filter out of the mixer 

are suitable for oscillators operating at around 

5 MHz. 

The active gain element (a,) of the loop is a 

DC amplifier with flat frequency response. One 

may replace this element by an integrator to 

achieve high gain near DC and hence, maintain 

better lock of the reference oscillator in long 

term. Otherwise long-term drift between the 

reference and test oscillators might require 

manual re-adjustment of the frequency of one or 

the other oscillator.' 

8:3 Procedure and Example 

At the input to the spectrum analyzer, the 

voltage varies as the phase fluctuations in short- 

term 

V ms (f) 2 
sp = v ( 1 S 

Vs is the phase sensitivity of the mixer in volts 

per radian. Using the previously described equip- 

ment set-up, V, can be measured by disconnecting 

the feedback loop to the varactor of the reference 

oscillator. The peak voltage swing is equal to Vs 

in units of volts/rad if the resultant beat note 

is a sine wave. This may not be the case for 

state-of-the-art Se(f) measurements where one must 

drive the mixer very hard to achieve low mixer 

noise levels. Hence, the output will not be a 

sine wave, and the volts/rad sensitivity must be 

estimated by the slew-rate (through zero volts) of 

the resultant square-wave out of the mixer/ampli- 

fier. 

The value for the measured Se(f) in decibels 

is given by: 

V 
sp 

,,Voltage at f 

,= *' log VSfull-scale @-detector voltage 

EXAMPLE: Given a PLL with two oscillators such 

that, at the mixer output: 

* 

I 

FIGURE 8.13 V, = 1 volt/rad 

8 See Appendix Note X 6 
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V&45 Hz) = 100 nV per root hertz 

solve for Sot45 Hz). 

= IO-14 g 

In decibels, 

So(45 HZ) = 20 log * = 20 log s 

= 2;) (-7) = -140 dB at 45 Hz 

In the example, note that the mean frequency 

of the oscillators in the PLL was not essential to 

computing S+(f). However, in the application of 

So(f), the mean frequency u. is necessary informa- 

tion. Along with an S@(f), one should always 

attach u 
0’ 

In the example above v. = 5 MHz, so we 

have 

So (45 Hz) = 10-l' s, v. = 5 MHz. 

From cq (8.7). Sy(f) can be computed as 

Sy (45 Hz) = 2 l(J-14 * 

Sy (45 Hz) = 8.1 x 10-2s Hz-l, v = 5 MHz. 
0 

IX. POWER-LAW NOISE PROCESSES 

Power-law noise processes are models of 

precision oscillator noise that produce a parti- 

cular slope on a spectral density plot. We often 

classify these noise processes into one of five 

categories. Far plots of So(f), they are: 

1. Random walk FM (random walk of fre- 

quency), So plot goes down as l/f4. 

2. Flicker FM (flicker of frequency), Se 

plot goes down as l/f3. 

3. White FM (white of frequency), Sa plot 

goes down as l/fs. 

4. Flicker PM (flicker of phase), So plot 

goes down as l/f. 

5. White PM (white of phase), So plot is 

flat. 

Power law noise processes are characterized by 

their functional dependence on Fourier frequency. 

Equation 8.7 relates So(f) to Sy(f), the spectral 

density of frequency fluctuations. Translation of 

Sy(f) to time-domain data uy(t) for the five model 

noise processes is covered later in section XI. 

The spectral density plot of a typical oscil- 

lator's output usually is a combination of dif- 

ferent power-law noise processes. It is very 

useful and meaningful to categorize the noise 

processes. The first job in evaluating a spectral 

density plot is to determine which type of noise 

exists for a particular range of Fourier fre- 

quencies. It is possible to have all five noise 

processes being generated from a single oscillator, 

but, in general, only two or three noise processes 

are dominant. Figure 9.1 is a graph of S,(f) 

showing the five noise processes on a log-log 

. scale. Figure 9.2 shows the spectral density of 

phase fluctuations for a typical high-quality 

oscillator. 
SPECW ENmY OF Pwsf 
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X. PITFALLS IN DIGITIZING THE DATA 

The advent and prolific use of digftal com- 

puters has changed the manner in which processing 

of analog signals takes place if a computer is 

used. This section addresses the most co-n 

problems in such analyses. 

10.1 Discrete-Continuous Processes 

Digital processing implies that data must be 

presented to a computer or other processor as an 

array of numbers whether in a batch or in a time 

series. If the data are not already in this form 

(it usually is not when considering frequency 

stability measurements), then it is necessary to 

transform to this format by digitizing. Usually. 

the signal available for analysis is a voltage 

which varies with frequency or phase difference 

between two oscillators. 

10.2 Diqitizino the Data 

Digitizing the data is the process of conver- 

ting a continuous waveform into discrete numbers. 

The process is completed in real time using an 

analog-to-digital converter (AK). Three consid- 

erations in the AOC are of importance here: 

1. Conversion time 

2. Resolution (quantization uncertainty) 

3. Linearity 

An ADC "looks at" an incoming waveform at equi- 

spaced intervals of time 1. Ideally, the output 

of the ADC is the waveform (denoted by y(t)) 

multiplied by a series of infinitely narrow 

sampling intervals of unit height as in figure 

10.1. We have at t = T 

YI(t) * y(t)b(t-T) = y(T)b(t-T) (10.1) 

where 6(t-T) is a delta function. If y(t) is 

continuous at t = nf and n = 0, *l, i2,..., then 

Y,(t) = 5 y(nT) 6 (t-nT) 
Iv-0 

(10.2) 
P = integer 

The delta function respresentation of a sampled 

waveform eq (10.2) is useful when a subsequent 

continuous integration is performed using it.6 

FIGURE 10.1 

In AOC's, the input signal is sampled during an 

aperture time and held for conversion to a digital 

number, usually binary. Sampling and processing 

takes time which is specified as the conversion 

*. This is the total time required for a 

complete measurement at one sample to achieve a 

given level of accuracy, If y,(t) is the ideal 

discrete-time representation of continuous process 

y(t), then the ADC output denoted by y;(t) is: 

,$ = Yp-,, - + c(g) (10.3) 

where "d" is the conversion time and t . g the 

accuracy tolerance at "d" as a function of rate-of- 

change in y(t). In general a trade-off exists 

between d and t. For example, for a commonly 

available, high-quality N-bit ADC, a conversion 

time of d = 10 us yields a maximum error of 3%. 

Whereas given a 30 us conversion time, we can 

obtain 0.1x maximum error. 

The error due to conversion time “d” is many 

times negligible since processing in digital 

filters and spectrum analysis takes place after 

the converter. Conversion time delay can be of 

critical concern, however, where real-time proces- 

sing at speeds of the order of "d" become important 
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such as in digital servo loops where corrections 

are needed for fart changing errors. 

A portion of the conversion-time error is a 

function of the rate of change dt 9 of the process 

if the sample-and-hold portion of the AOC relies 

on the charging of a capacitor during an aperture 

time. This is true because the charge cycle will 

have a finite time-constant and because of aperture 

time uncertainty. For example, if the timr-con- 

stant is 0.1 nr (given by say a 0.1 Q source 

resistance charging a 0.001 pfd capacitor), then 

& a 0.1x nominal error will exist for slope At = 

lV/us due to charging. With good design, this 

error can be reduced. The sampling circuit (be- 

fore charge) is usually the dominant source of 

error and logic gate-delay jitter creates an 

aperture time uncertainty. The jitter typically 

is between 2-5 ns which means an applied signal 

slewing at, say, 1 V/us produces an uncertainty 

of 2-5 mV. Since c*g is directly proportional 

to signal slewing rate, it can be anticipated that 

high-level, high-frequency components of y(t) will 

have the greatest error in conversion. For typical 

AOC's, less than 0.1x error can be achieved by 

holding s to less than 0.2 V/us. 

The continuous process y(t) is partitioned 

into 2" discrete ranges for n-bit conversion. All 

analog values within a given range are represented 

by the same digital code, usually assigned to the 

nominal midrange value. There is, therefore, an 

inherent auantizatfon uncertainty of f 4 least- 

significant bit (LSB), in addition to other conver- 

sion errors. For example, a lo-bit AOC has a total 

of 1024 discrete ranges with a lowest order bit 

then representing about 0.U: of full scale and 

quantitation uncertainty of f 0.06%. 

We define the dynamic range of a digital 

system as the ratio between the maximum allowable 

value of the process (prior to any overflow condi- 

tion) and the minimum discernable value. The 

dynamic range when digitizing the data is set by 

the quantizing uncertainty, or resolution, and 

is the ratio of 2" to 4 LSB. (If additive noise 

makes coding ambiguous to the 4 LSB level, then 

the dynamic range is the ratio of 2" to the noise 

uncertainty, but this is usually not the case.) 

For example, the dynamic range of a lo-bit system 

is 2" = 1024 to 4, or 2048 to 1. Expressed in 

de’s, this is 

20 log 2048 = 66.2 dB 

if referring to a voltage-to-code converter. 

The converter linearity specifies the degree 

to which the voltage-to-code transfer approximates 

a straight line. The nonlinearity is the deviation 

from a straight line drawn between the end points 

(all zeros to all ones code). It is usually not 

acceptable to have nonlinearity greater than 4 LS8 

which means that the sum of the positive errors or 

the sum of the negative errors of the individual 

bits must not exceed 4 LSB (or f 4 LSB). The 

linearity specification used in this context 

includes all effects such' as temperature errors 

under expected operating temperature extremes and 

power supply sensitivity errors under expected 

operating supply variations. 

10.3 Aliasinq 

Figure 10.1 illustrates equispaced sampling 

of continuous process y(t). It is important to 

have a sufficient number of samples/second to prop- 

erly describe information in the high frequencies. 

On the other hand, sampling at too high a rate may 

unnecessarily increase the processing labor. As 

we reduce the rate, we see that sample values 

could represent low or high frequencies in y(t). 

This property is called aliasinq and constitutes a 

source of error similiar to "imaging" which occurs 

in analog frequency mixing schemes (i.e., in the 

multiplication of two different signals). 

If the time between samples (k) is T seconds, 

then the sampling rate is $ samples per second. 

Then useful data in y(t) will be from 0 to b Hz 

and frequencies higher than &I Hz will be folded 

into the lower range from 0 to b Hz and confused 

with data in this lower range. The cutoff fre- 

quency is then given by 

fS = +T (10.4) 

and is sometimes called the "Myquist frequency." 
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We can use the convolution theorem to simply 

illustrate the existence of aliases. This theorem 

states that multiplication in the time domain 

cot-responds to convolution in the frequency domain, 

and the time domain and frequency domain represen- 

tations are Fourier transform pairs.' The 

Fourier transform of y(t) in figure 10.1(a) is 

denoted by Y(f); thus: 

Y(f) convolved with Af is denoted by Y(f)* 

A(f) and is shown in figure 10.2(c). We see that 

the transform Y(f) is repeated with origins at 

f = 3. Conversely, high frequency data with infot- 

mation around f = ; will fold into the data around 

the origin between -fS and +f,. In the computation 

of power spectra, we encounter errors as shown in 

figure (10.3). 

0 

Y(f) = 

/ 

y(t)e-j2nftdt (10.5) 

-0 

and 

m 

y(t) = 2 
/ 

Y(f)ej2nftdf (10.6) 

FIGURE 10.3 

Aliased power spectra due to folding. (a) True 
Spectra, (b) Aliased Spectra. 

Two pioneers in information theory, Harold 

Nyquist and Claude Shannon, developed design 

criteria for discrete-continuous processing sys- 

tems. Given a specified accuracy, we can convey 

time-domain process y(t) through a finite band- 

width whose upper limit f,,, is the highest signifi- 

cant spectral component of y(t). For discrete- 

continuous process y,(t), ideally the input signal 

spectrum should not extend beyond fS, or 

The function Y(f) is depicted in figure 10.2(a). 

The Fourier transform of A(t) is shown in figure 

10.2(b) and is given by A(f) where applying the 

discrete transform yields: 

A(f) = f (10.7) 

recalling that 

A(t) = ,$- a(t -nT), (10.8) 

fN 5 f~ 
(10.9) 

from eq (10.2). where fs is given by eq (10.4). Equation (10.9) 

is refered to as the "Shannon limit." 

In practice, there is never a case in which 

there is absolutely no signal or noise component 

above f,,. Filters are used before the ADC in 

order to suppress components above fN which fold 

into the lower bandwidth of interest. This so- 

called anti-aliasing filter usually must be quite 

sophisticated in order to have low ripple in the 

passband, constant phase delay in the passband, 

and steep rolloff characteristics. In examining 

the rolloff requirements of the anti-aliasing 

filter, we can apply a fundamental filter property 

that the output spectrum is equal to the input FIGURE 10.2 
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spectrum multiplied by the square of the frequency 

response function; that is, 

S(f) [H(f)12 = S(f) (10.10) 
out 

The filter response must be flat to fN and at- 

tenuate aliased noise components at y t f f 

2nfsf f. In digitizing the data, the observed 

spectra will be the sum of the baseband spectrum 

(to fN) and all spectra which are folded into the 

baseband spectrum 

S(f) = So(f) + s-1 (2fs - f) l S,l (2fs + f) 

observed 

+ Se, (4fs - f).... + Si (2 i (fs + $ f)) 

(10.11) 
M 

= SO(f) + 
i=-M 

si (2 i (fs + f)) 

where M is an appropriate finite limit. 

For a given rejection at an upper frequency, 

clearly the cutoff frequency f, for the anti- 

aliasing filter should be as low as possible to 

relax the rolloff requirements. Recall that an 

nth order low-pass filter has frequency response 

function 

(10.l22) 

and output spectrum 

S(f) = 

37 

s f 2n (10.13) 
out 1 + f 

C 

and after sampling, we have 

S(f) = 
S,(f) M 

c 
observed 2n *it-M 

1+ 

(applying eq (10.11)) 

Si(2 i (fs + ff)) 

1+ 
2 i (fs + +f)2n 

fc 

(10.14) 

If fc is chosen to be higher than fN, then the 

first term (baseband spectrum) is negligibly 

affected by the filter, which is our hope. It is 

the second term (the sum of the folded in spectra) 

which causes an error. 

As an example of the rolloff requirement, 

consider the measurement of noise process n(t) at 

f = 400 HZ in a 1 Hz bandwidth on a digital spec- 

trum analyzer. Suppose n(t) is white; that is, 

S,,(f) = k, (10.15) 

kO 
= constant 

Suppose further that we wish to only measure the 

noise from 10 Hz to 1 kHr; thus fN = 1 kHz. Let 

us assume a sampling frequency of f, = 2fN or 

2 kHz. If we impose a 1 dB error limit in 

5 observed and have 60 d6 of dynamic range, then we 

can tolerate an error limit of ?O-s due to aliasing 

effects in this measurement, and the second term in 

eq (10.14) must be reduced to this level. We can 

choose f 
C 

f l.SkHr and obtain 

kO 
S(f) 

observed 
= k, + 5 

i=-M 2 i (fs + +f) 2n 

l+ fc 

(10.161 

The term in the series which contributes most is 

at i f -1, the nearest fold-in. The denominator 

must be lo6 or more to realize the allowable error 

limit and at n 2 8 this condition is met. The 

next most contributing term is i = +l at which the 

error is < lo-' for n = 8, a negligible contribu- 

tion. The error increases as f increases for a 

fixed n because the nearest fold-in (i = -1) is 

coming down in frequency (note fig. 10.2(c)) and 

power there is filtered less by the anti-aliasing 

filter. Let us look at the worst case (f = 1kHt) 

to determine a design criteria for this example. 

At f = 1 kHz, we must have n 2 10. 

Thus the requirement in this example is for a 

lO:pole low-pass filter (60 dB/octave rolloff). 

10.4 Some History of Spectrum Analysis Leadinq to 

the Fast Fourier Transform 

Newton in his Principia (1687) documented the 

first mathematical treatment of wave motion al- 
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though the concept of harmonics in nature was in the analysis, but in general the time-averaged, 

sample spectrum is the approach taken since its 

implementation is direct and straightforward. 

Most always, ergodicity can be assumed.899 

pointed out by Pythagoras, Kepler, and Galileo. 

However, it was the work of Joseph Fourier in 1807 

which showed that almost any function of a real 

variable could be represented as the sum of sines 

and cosines. The theory was rigorously treated in 

a document in 1622. 

In using Fourier's technique, the periodic 

nature of a process or signal is analyzed. Fourier 

analysis assumes we can apply fixed amplitudes, 

frequencies, and phases to the signal. 

In the early 1900's two relatively independent 

developments took place: (1) radio electronics 

and electric power hardware were fast growing 

technologies; and (2) statistical analysis of 

events or processes which were not periodic became 

increasingly understood. The radio engineer 

explored signal and noise properties of a voltage 

or current into a load by means of the spectrum 

analyzer and measurement of the power spectrum. 

On the other hand, statisticians explored deter- 

ministic and stochastic properties of a process by 

means of the variance and self-correlation pro- 

perties of the process at different times. Wiener 

(1930) showed that the variance spectrum (i.e., 

the breakdown of the variance with Fourier fre- 

quency) was the Fourier transform of the autocor- 

relation function of the process. He also theor- 

ized that the variance spectrum was the same as 

the power spectrum normalized to unit area. Tukey 

(1949) advocated the use of the variance spectrum 

in the statistical treatment of all processes 

because (1) it is more easily interpreted than 

correlation-type functions; and (2) it fortuitously 

is readily measureable by the radfo engineer. 

The 1950's saw rigorous application of stati- 

stics to coswunication theory. Parallel to this 

was the rapid advancement of digital COslputer 

hardware. Blackman and Tukey (1959) and Welch 

(1961) elaborated on other useful methods of 

deriving an estimate for the variance spectrum by 

taking the ensemb!e time-average sampled, discrete 

line spectra. The approach assumes the random 

process is ergodic. Some digital approaches 

estimate the variance spectrum using Wiener's 

theorem if correlation-type functions are useful 

The variance of process y(t) is related to 

the total power spectrum by 

0 

oZ~r(t)l = 1 Sy(f) df. (10.17) 

Since 

02b(t)l = ;E h -{Ty2(t) dt (10.18) 

we see that if y(t) is a voltage or current into a 

l-ohm load, then the mean power of y(t) is the 

integral of Sy(f) with respect to frequency over 

the entire range of frequencies (-0~0). Sy(f) is, 

therefore, the power spectrum of process y(t). 

The power spectrum curve shows how the variance is 

distributed with frequency and should be expressed 

in units of watts per unit of frequency, or volts 

squared per unit of frequency when the load is not 

considered. 

Direct estimation of power spectra has been 

carried out for many years through the use of 

analog instruments. These have variously been 

referred to as sweep spectrum analyzers, harmonic 

analyzers, filter banks, and wave analyzers. 

These devices make use of the fact that the spec- 

trum of the output of a linear system (analog 

filter) is the spectrum of the input multiplied by 

the square of the system's frequency response 

function (real part of the transfer character- 

istic). Note eq (10.10). If y(t) has spectrum 

Sy(f) feeding a filter with frequency response 

function H(f), then its output is 

S(f) f [H(f)]* Sy(f) (10.19) 
filtered 

If H(f) is rectangular in shape with width Af, 

then we can measure the contribution to the total 

power spectrum due to Sy(f 2 $1. 

The development of the fast Fourier transform 

(FFT)'in 1965 made digital methods of spectrum 

30 

TN-43 



estimation increasingly attractive. Today the 

choice between digital or analog methods depends 

more on the objectives of the analysis rather than 

on technical limitations. However, many aspects 

of digital spectrum analysis are not well known by 

the casual user in the laboratory while the analog 

analysis methods and their limitations are under- 

stood to a greater extent. 

Digital spectrum analysis is realized using 

the discrete Fourier transform (OFT), a modified 

version of the continuous transform depicted in 

l qs (10.5) and (10.6). By sampling the input 

waveform y(t) at discrete intervals of time t, = 

At representing the sampled waveform by eq (10.2) 

and integrating eq (10.5) yields 

Y(f) = 2 y(et)e 
-j2nfPT 

(10.20) 
g=-o 

Equation (10.20) is a Fourier series expansion. 

Because f(t) is specified as being bandlimited, 

the Fourier transform as calculated by eq (10.20) 

is as accurate as eq (10.5); however, it cannot 

extend beyond the Nyquist frequency, eq (10.4). 

In practice we cannot compute the Fourier 

transform to an infinite extent, and we are re- 

stricted to some observation time T consisting of 

nht intervals. This produces a spectrum which is 

not continuous in f but rather is computed with 

resolution Af where 

(10.21) 

With this change, we get the dlscrete finite 

transform 

Y(mAf) = 8 ye(t)e-jMfnt (10.22) 

The DFT computes a sampled Fourier series, 

and eq (10.22) assumes that the function y(t) 

repeats itself with period T. Y(mAf> is called 

the "line spectrum." A comparison of the DFT with 

the continuous Fourier transform is shown later in 

part 10.7. 
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The fast Fourier transform (FFT) is an algor- 

ithm which efficiently computes the line spectrum 

by reducing the number of adds and multiplies 

involved in eq (10.22). If we choose T/At to 

equal a rational power of 2, then a symmetric 

matrix can be derived through which y,(t) passes 

and quickly yields Y(Mf). An N-point transfor- 

mation by the direct method requires a processing 

time proportional to Na whereas the FFT requires a 

time proportional to N log, N. The approximate 

ratio of FFT to direct computing time is given by 

N logs N log, N 

N' 
z--q 

N 
(10.23) 

where N = 2y. For example, if N = 21°, the FFT 

requires less than l/100 of the normal processing 

time. 

We must calculate both the magnitude and 

phase of a frequency in the line spectrum, i.e., 

the real and imaginary part at the given frequency. 

N points in the time domain allow N/2 complex 

quantities in the frequency domain. 

The power spectrum of y(t) is computed by 

squaring the real and imaginary components, adding 

the two together and dividing by the total time T. 

We have 

Sy(mAf) = 
R[Y(maf)]z + I[Y(maf)]* 

T (10.24) 

This quantity is the sampled power spectrum 

and again assumes periodicity in process y(t) with 

total period T.io 

10.5 Leakaqe 

Sampled digital spectrum analysis always 

involves transforming a finite block of data. 

Continuous process y(t) is "looked at" for T time 

through a data window which can functionally be 

described by 

Y' (t) = w(t)-y(t) (10.25) 

where w(t) is the time domain window. The time- 

discrete counterpart to eq (10.25) is 

Yp = W,WY,W (10.26) 
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and w,(t) is now the sampled version of w(t) The transform process (eq 10.22) treats the 

derived similarly to eq (10.2). Equation (10.26) sample signal as if it were periodically extended. 

is equivalent to convolution in the frequency Discontinuitier usually occur at the ends of the 

domain, or window function in the extended version of the 

sampled waveform as in figure 10.5(c). Sample 

spectra thus represent a periodically extended 

sampled waveform, complete with discontinuites at 

its ends, rather than the original waveform. 

Y'(ln4f) = w(mPf)*Y(mPf) (10.27) 

Y'(mAf) is called the "modified" line spectrum due 

to convolution of the original line spectrum with 

the Fourier transform of the time-domain window 

function. 

Suppose the window function is rectangular, 

and . 

we(t) = 1, 

= 0, 
(10.28) 

This window is shown in figure 10.4(a). The 

Fourier transform of this window is 

W(maf) = T 
sinn mPf NT 

mufNT 
(10.29) 

and is shown in figure 10.4(b). If y(t) is a sine 

wave, we convolve the spectrum of the sinusoid, a 

delta function, with W(mAf). 

FIGURE 10.4 

FIGURE 10.5 

Spurious components appear near the sinusoid 

spectrum and this is referred to as "leakage." 

Leakage results from discontinuites in the periodi- 

cally extended sample waveform. 

Leakage cannot be eliminated entirely, but 

one can choose an appropriate window function w(t) 

in order to minimize its effect. This is usually 

done at the expense of resolution in the frequency 

domain. An optimum window for most cases is the 

Hanning window given by: 

w(t) = [$ - $ cos (?)]a (10.30) 

for 0 5 t 5 T and "a" designates the number of 

times the window is implemented. Figure 10.6(a) 

shows the window function and 10.6(b) shows the 

Hanning line shape in the frequency domain for 

various numbers of "Harms." Note that this window 
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FIGURE 10.6 

eliminates discontinuities due to the ends of 

sample length T. 

Each time the Hanning window is applied,the 

sidelobes in the transform are attenuated by 32 

&/octave, and the main lobe is widened by Z&f. 

The amplitude uncertainty of an arbitrary sine 

wave input is reduced as we increase the number of 

Hanns; however, we trade off resolution in fre- 

quency. 

The effective noise bandwidth indicates the 

departure of the filter response away from a true 

rectangularly shaped filtered response (frequency 

domain). Table 10-I lists equivalent noise band- 

width corrections for up to three applfcations of 

the Hanning window.11 

Number of- Hanns 
. 
L 

2 

3 

Equivalent Noise 

_ Bandwidth 

1.5 Af 

1.92 Af 

2.31 Of 

TABLE 10.1 

10.6 Picket-Fence Effect 

The effect of leakage discussed in the pre- 

vious section gives rise to a sidrlobe type re- 

sponse that can be tailored according to the 

time-window function through which the analyzed 

signal passes as a block to be transformed to the 

frequency domain. Using the Hanning window dimin- 

ishes the amplitudes of the sidelobes, however, it 

increases the effective bandwidth of the passband 

around the center frequency. This is because the 

effective time-domain window length is shorter 

than a perfect rectangular window. Directly 

related to the leakage (or sidelobe) effect is one 

called the "picket-fence" effect. This is because 

the sidelobes themselves resemble a frequency 

response which has geometry much like a picket 

fence. 

The existence of both sidelobe leakage and 

the resultant picket-fence effect are an artifact 

of the way in which the FFT analysis is performed. 

Frequency-domain analysis using analog filters 

involves a continuous .signal in and a continuous 

signal out. On the other hand, FFT analysis 

involves a continuous signal in, but the transform 

to the frequency domain is performed on blocks of 

data. In order to get discrete frequency informa- 

tion from a block, the assumption is made that the 

block represents one period of a periodic signal. 

The picket-fence effect is a direct consequence of 

this assumption. For example, consider a sinewave 

signal which is transformed from a time-varying 

voltage to a frequency-domain representation 

through an FFT. The block of data to be transform- 

ed will be length, T, in time. Let's say that the 

block, T, represents only 44 cycles of the input 

sinewave as in figure 10.5. Artificial sidebands 

will be created in the transfona to the frequency 

domain, whose frequency spacing equals f, or the 

reciprocal of the block length. This represents 

a worst-case condition for sidelobe generation 

and creates a large number of spurious discrete 

frequency components as shown in figure 10.7(b). 

If, on the other hand, one changes the block 

time, T, so that the representation is an integral 

number of cycles of the input sinewave, then the 

transform will not contain sidelobe leakage compo- 
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FIGURE 10.7 

nents and the artificial sideband frequency compo- 

nents disappear. In practice, when looking at 

complex input signals, the block time, T, is not 

synchronous with any component of the transformed 

part of the signal. As a result, discrete fre- 

quency components in the frequency domain have 

associated with them sidebands which come and go 

depending on the phase of the time window, T, 

relative to the sine components of the incoming 

signal. The effect is much like looking through a 

picket fence at the sidebands.12 

An analogy to the sidelobe leakage and picket- 

fence effect is to record the incoming time-varying 

signal on a tape loop, which has a length of time, 

T. The loop of tape then repeats itself with a 

period of T. This repeating signal is then coupled 

to a scanning or filter-type spectrum analyzer. 

The phase discontinuity between the end of one 

passage of the loop and the beginning of the loop 

on itself again represents a phase-modulation 

component, which gives rise to artificial sidebands 

in the spectrum analysis. A word of caution - 

this is not what actually happens in a FFT analyzer 

(i.e., there is no recirculating memory). However, 

the Fourier transform treats the incoming block as 

if this were happening. 

10.7 Time Domain-Frequency Domain Transforms 

A. Integral transform 

Figure 10.8 shows the well-known integral 

transform, which transforms a continuous time- 

domain signal extending over all time into a 

FIGURE 10.8 

continuous frequency-domain signal extending over 

all frequency. This is the ideal transform. In 

practice, however, one deals with finite times and 

bandwidths. The integral transform then, at best, 

is an estimate of the transform and is so for only 

short, well-behaved signals. That is, the signal 

goes to zero at infinite time and at infinitely 

high frequency. 

9. Fourier series 

The Fourier-series transform assumes perio- 

dicity in the time-domain signal for all time. 

Only one period of the signal (for time T) is 

required for this kind of transform. The Fourier 

series treats the incoming signal as periodic with 

period, T, and continuous. The transformed spec- 

trum is then discrete with infinite harmonic 

components with frequency spacing of $. This is 

shown in figure 10.9. 

FIGURE 10.9 
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FIGURE 10.10 

Figure 10.10 shows the transform from a SW 

pled time-domain signal to the frtqruncy domain. 

Note that in the frequency domain, the result is 

repetitive in frequency. This effect, cmmeonly 

called aliasing, is discussed earlier in section 

10.3. Figure 10.9 and figure 10.10 show the sym- 

metry between the time- and frequency-domain trans. 

forms of discrete lines. 

C. Discrete fourier transform 

Finally, we have the sampled, periodic 

(assumed) time-domain signal which is transformed 

to a discrete and repetitive (dliased) frequency- 

domain representation. This is shown in figure 

10.11 

FIGURE 10.11 

XI. TRANSLATION FROM FREQUENCY DOMAIN STABILITY 

MEASUREMENT TO TIME DOMAIN STABILITY MEASURE- 

MENT AND VICE-VERSA. 

11.1 Procedure 

Knowing lum to measure Se(f) or Sy(f) for a 

pair of oscillators, let us see how to translate 

the power-law noise process to a plot of uy2(r). 

First, convert the spectrum data to Q(f), the 

spectral density of frequency fluctuations (see 

sections III dnd VIII). There are two quantities 

which tolnpletely specify Sy(f) for a particular 

power-law noise process: (1) the s.lope on a 

log-log plot for a given range of f and (2) the 

amplitude. The slope we shall denote by “a”; 

therefore P is the straight line (on log-log 

scale) which relates Sy(f) to f. The amplitude 

will be denoted “her"; it is simply the coefficient 

of f for a range of f. When we examine a plot of 

spectral density of frequency fluctuations, we are 

looking at a representation of the addition of all 

the power-law processes (see sec. IX). We have 

m 

Sy(f) = c ha e 
a=- 

(11.1) 

In section IX, five power-law noise processes 

WCC outlined with respect to Se(f). These five 

are the c-on ones encountered with precision 

oscillators. Equation (8.7) relates these noise 

processes to Sy(f). One obtains 

1. Uandom Walk FM 

2. Flicker FM 

3. White Fi4 

4. Flicker @l 

5. White @i 

with respect to 

Sy(f) 

(f-2) . . . a = -2 

(f-1) . . . 4 = -1 

(1) . ..a= 0 

(f) . ..a= 1 

(f2) . . . a = 2 

slope on 

log-log 

paper 

Table Il.1 is a list of coefficients for 

translation from uy*(r) to Sy(f) and from Se(f) to 
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ayw. In the table, the left column is the 

designator for the power-law process. Using the 

middle column, we can solve for the Value of Sy(f) 

by computing the coefficient "a" and using the 

measured time domain data uy*(r). The rightmost 

column yields a solution for uy2(r) given frequency 

domain data Se(f) and a calculation of the appro- 

priate "b" coefficient. 

SyU) = Hof 
a= 

sym 
a 

=a 
= 

EXAMPLE: 

In the phase spectral density plot of figure 

11.1, there are two power-law noise processes for 

oscillators being compared at 1 MHz. For region 

1, we see that when f increases by one decade 

(that is, from 10 Hz to 100 Hz), So(f) goes down 

by three decades (that is, from lo-" to 10-l'). 

Thus, Se(f) goes as l/f3 = f-l. For region 1. we 

up up = b Se(f) 
b= 

(white'phase) 
3 fh 

-) 
2 23 

'( "0 

(flicka: noise) -iY36%%+ 

11.038 + 3 ln(whr)]f 

(2n)Z T2 "'0 

(white ffequency) 

(flicker-:requency) 

2r 

(random way: frequency) 
6 

(tin>2 T ff 

TABLE 11.1 
Conversion table from time domain to frequency domain and from frequency 

domain to time domain for comR)on kinds of interger power law spectral densities; 
f (= III /2x) is the measurement system bandwidth. Measurement reponse should be 
w!thinh3 dB from O.C. to fh (3 dB down high-frequency cutoff is at fh). 

identify this noise process as flicker FM. The 

rightmost column of table 11.1 relates U;(T) to 

sp. The row designating flicker frequency 

noise yields: 

u;w = ,w Se(f) 
0 

One can pick (arbitrarily) a convenient Fourier 

frequency f and determine the corresponding values 

of Se(f) given by the plot of figure 11.1. Say, 

f 

-w1 

= 10, thus Se(10) = lo-". Solving for u;(t), 

a 
1 

given v. = 1 MHz, we obtain: 

FIGURE 11.1 

therefore, uy(r) = 1.18 x lo-lo. For region 2, we 

have white PM. The relationship between u;(t) and 
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So(f) for white PM is: 

3fh 
up = %)Z T* " 

0 
*S*(f) 

Again, we choose a Fourier frequency, say f = 100, 

and see that 5 (100) = 10-l'. 
0 

Assuming fh = 10' 

Hz. we thus obtain: 

1 u;(T) = 7.59 x 10-24. 72 

therefore, 

uyw = 2.76 x lo-'* 3. 

The resultant time domain characterization is 

shown in figure 11.2. 

FIGURE 11.2 

The translation of So(f) of figure 1Llyields this 
Uy(T) plot. 

FIGURE 11.4 

Figures 11.3 and 11.4 show plots of time- 

domain stability and a translation to frequency 

domain. Since table 11.1 has the coefficients 

which connect both the frequency and time domains, 

it may be used for translation to and from either 

domain. 

XII. CAUSES OF NOISE PROPERTlES IN A SIGNAL SOURCE 

12.1 Power-law Noise Processes 

Section IX pointed out the five commonly used 

power-law models of noise. With respect to So(f), 

one can estimate a staight line slope (on a log-log 

scale) which corresponds to a particular noise 

type. This is shown in figure l2,l (also fig.9.1). 

FIGURE 11.3 FIGURE 12.1 
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We can make the following general remarks about 

power-law noise processes: 

1. Random walk FM (l/f') noise is difficult 

to measure since it is usually very 

close to the carrier. Random walk FM 

usually relates to the OSCILLATOR'S 

PHYSICAL ENVIRONMENT. If random walk FM 

is a predominant feature of the spectral 
density plot then MECHANICAL SHOCK, 

VIBRATION, TEMPERATURE, or other envi- 

ronmental effects may be causing "random" * 

shifts in the carrier frequency. 

2. Flicker FM (l/f3) is a noise whose 

physical cause is usually not fully 

understood but may typically be related 

to the PHYSICAL RESONANCE MECHANISM OF 

AN ACTIVE OSCILLATOR or the DESIGN OR 

CHOICE OF PARTS USED FOR THE ELECTRONICS, 

or ENVIRONMENTAL PROPERTIES. Flicker FM 

is common in high-quality oscillators, 

but may be masked by white FM (l/f*) or 

flicker PM (l/f) in lower-quality oscil- 

lators. 

3. White FM (l/f*) noise is a common type 

found in PASSIVE-RESONATOR FREQUENCY 

STANDARDS. These contain a slave oscil- 

lator, often quartz, which is locked to 

a resonance feature of another device 

which behaves much like a high-q filter. 

Cesium and rubidium standards have white 

FM noise characteristics. 

4. Flicker PM (l/f) noise may relate to a 

physical resonance mechanism in an 

oscillator, but it usually is added by 

NOISY ELECTRONICS. This type of noise 

is comnon, even in the highest quality 

oscillators, because in order to bring 

the signal amplitude up to a usable 

level, amplifiers are used after the 

signal source. Flicker PM noise may be 

introduced in these stages. It may also 

be introduced in a frequency multiplier. 

* See Appendix Note # 7 

5. 

Flicker PM can be reduced with good 

low-noise amplifier design (e.g., using 

rf negative feedback) and hand-selecting 

transistors and other electronic com- 

ponents. 

White PM (f') noise is broadband phase 

noise and has little to do with the 

resonance mechanism. It is probably 

produced by similar phenomena as flicker 

PM (l/f) noise. STAGES OF AMPLIFICATION 

are usually responsible for white PM 

noise. This noise can be kept at a very 

low value with good .amplifier design, 

hand-selected components, the addition 

of narrowband filtering at the output, 

or increasing, if feasible, the power of 

the primary frequency source.13 

12.2 Other types of noise 

A commonly encountered type of noise from a 

signal source or measurement apparatus is the 

presance of 60 Hz A.C. line noise. Shown in 

figure 12.2 is a constant white PM noise source 

with 60 Hz, 120 Hz and 180 Hz components added. 

This kind of noise is usually caused by AC power 

getting into the measurement system or the.source 
under test. In the plot of So(f), one observes 

discrete line spectra. Although So(f) is a measure 

of spectral density, one can interpret the line 

spectra with no loss of generality, although one 

usually does not refer to spectral densities when 

characterizing discrete lines. Figure 12.3 is the 

time domain representation of the same white phase 

modulation level with 60 Hz noise. Note that the 

amplitude of u,(t) varies up and down depending on 

sampling time. This is because in the time domain 

the sensitivity to a periodic wave varies directly 

as the sampling interval. This effect (which is 

an alias effect) is a very powerful tool for 

filtering out a periodic wave imposed on a signal 

source. By sampling in the time domain at integer 

periods, one is virtually insensitive to the 

periodic (discrete line) term. 
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FM behavior masks 

imposed vibration 

aging times. 

the white PM (with the super 

characteristic) for long aver- 

FIGURE 12.2 

FIGURE 12.4 

FIGURE 12.3 

For example, diurnal variations in data due to day 

to day temperature, pressure, and other environ- 

mental effects can be eliminated by sampling the 

data once per day. This approach is useful for 

data with only one periodic term. 

Figure 12.4 shows the kind of plot one might 

see of S (f) 
Q 

with vibration and acoustic sen- 

sitivity in the signal source with the device 

under vibration. Figure 12.5 shows the transla- 

tion to the time domain of this effect. Also 

noted in figure 12.4 is a (typical) flicker FM 

behavior in the low frequency region. In the 

translation to time domain (fig. l2.5), the flicker 

FIGURE 12.5 

Figure 12.6 shows examples of plots of two 

power law processes (Se(f)) with a change in the 

flicker FM level. (Example 1 is identical to the 

example given in sec. XI.) Figure 12.7 indi- 

cates the effect of a lower flicker FM level as 

translated to the time 'domain. Note again the 

existence of both power law noise processes. 

However for a given averaging time (or Fourier 

frequency) one noise process may dominate over the 

other; 
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FIGURE 12.8 

FIGURE 12.9 

Excess device noise from transistors, capa- 

citors, resistors, and the like can introduce a 

low frequency noise which has been referred to as 

"popcorn" noise because of its sonic qualities. 

Figure 12.8 shows a plot of So(f) from a signal 

source having such excess low frequency noise. 

Figure 12.9 is the time domain representation. 

The rise in amplitude of uy for long averaging 

times is particularly aggravating. The solution 

to this kind of problem if it is introduced by 

devices is to carefully grade the devices in the 

assembly and testing process. 

Stages of amplification following a signal 

source many times rely on local degenerate or 

overall negative feedback schemes in order to 

minimize the excess noise from active gain elements 

(such as transistors). This is the recommended 

design approach. However, phase shift in the 

negative feedback circuit or poor bandwidth in the 

gain elements can result in poor high frequency 

noise behavior. Figure 12.10 shows a kind of 

result one might see as a gradual rise in So(f) 

because of insufficient negative feed back at 

high Fourier frequencies. 

Section X discussed aliasing in the frequency 

domain. Figure 12.11 shows the resultant measure- 

ment anomaly due to digital sampling of a poorly 

bandlimited (anti-aliased) white noise source. 

Noise voltage above the sampling frequency fS is 

folded into the analysis region of interest. Note 

also that the stopband ripple characteristics are 

folded into the high-frequency portion of the 

passband. For a given sampling frequency, a 

compromise exists between increasing the high- 
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frequency extent of the analysis band and improving 

the anti-aliasing filter's stopband rejection. 

Section X has an example of the filter requirements 

for a particular case. 

XIII. CONCLUSION 

This writing highlights major aspects of 

time-domain and frequency-domain oscillator signal 

measurements. The contents are patterned after 

lectures presented by the authors. The authors 

have tried to be general in the treatment of 

topics,. and bibliography is attached for readers 

who would like details about specific items. 
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12 FREQUENCY AND TIME MEASUREMENT 193 

12.1 CONCEPTS, DEFIMTIONS, AND MEASURES 
OF STABILITY 

This chapter deals with the measurement of the frequency or time stability 
of precision oscillators. It is assumed that the average output frequency is 
determined by a narrow-band circuit so that the signal is very nearly a sine 
wave. To be specific, it is also assumed that the output is a voltage, which is 
conventionally (Barnes ef al., 1971) represented by the expression 

V(c) = [V. + E(t)] sin[Zxv,t + &r)]. (12-l) 

where V, is the nominal peak voltage amplitude, s(t) the deviation of 
amplitude from nominal, v,, the nominal fundamental frequency, and H(t) the 
deviation of phase from nominal. 

When either specifying or measuring the noise in an oscillator, one must 
consider the nature of the reference. This may be either a passive circuit such 
as a narrow-band filter, another similar oscillator, or a set of oscillators, 
synthesizers, and other signal-generating equipment. A reference with lower 
noise than the device under test may be available, and in this case the 
expressions developed in this chapter describe the noise in the oscillator 
alone. However, a state-of-the-art device will have lower noise than any 
available reference. In this case all the expressions below refer to the sum of 
device and reference noise. The most common approach to solving this 
problem is to compare two or more nearly identical devices. Under most 
circumstances it is then reasonable to assume that each oscillator contributes 
half of the measured noise. 

The most direct and intuitive method of characterizing the properties of 
a signal is to determine the two-sided spectrum of V(t), which is denoted 
ST(j) (Rutman, 1978). The variablef is called a Fourier frequency and is 
very closely related to the concept of a modulation frequency. A positive 
f indicates a frequency above the carrier frequency vo, while a negative f 
indicates a frequency lower than the carrier. Since the noise can in theory 
modulate the carrier at all possible frequencies, a continuous function is 
required to describe the modulation of V(r). S is called a spectral density and 
Szs(f) is the mean-square voltage (V*(t)) in a unit bandwidth centered at/. It 
is proportional to the rf power per unit bandwidth delivered by the oscillator 
to a matched load. The total signal power is proportional to the mean square 
voltage, which is also called the variance of the signal since the mean value of 
V(t) is zero. The variance is therefore equal to the two-sided spectral density 
integrated over all frequencies. 

The two-sided spectrum is usually measured by an rf spectrum analyzer, a 
device that functions like a bandpass filter followed by a bolometer, as shown 
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194 SAMUEL R. STEIN 

FIG. 12-1 An rf spectrum uul>zer. The device produas an output proportional to the 
mean-square value of the si@ pruing through I tutuble narrow-bnd filter antered at 

f=wwh. 

in Fig. 12-l. The spectrum of the filtered voltage V’(t) is equal to the square 

of the magnitude of the filter transfer function H(f - lo) multiplied by the 
spectrum of the input signal (Cutler and Searle, 1966). The variance of the 
filtered voltage is obtained from Parseval’s theorem: 

&(fo) = IQ IW - fo)l”mf)& (12-2) 
-m 

If the bandpass filter is sufficiently narrow, so that Sa/) changes negligibly 
over its bandwidth, then Eq. (12-2) may be inverted. With this assumption, 
the power spectrum is estimated from the measurement using Eq. (12-3): 

SWO) = 6%,),‘B, (12-3) 

where B = j” o VW’ - lo)12 4 ’ is the noise bandwidth of the filter andf, its 
center frequency. Figure 1 2-2 shows a typical two-sided rf spectrum. For 
many oscillators the spectrum has a Lorentzian shape, that is, 

’ . cf) P 
2( V2>ln Afi,a 

= 1 + (fi(Ajada’2),’ . 
(12-4) 

The Lorenttian lineshape is completely described by the mean square voltage 
(V’) and the full width at half maximum A/368. 

I 

I I 

-1, 0 f, f 

FIG. 12-2 The rf spectrum of a signrl. It is often useful to divide the spectrum inlo the 
carrier and the noise pedestal. The spectral density of the carrier exceeds that of the noise 
pedestal for Fourier frequencies smaller in magnitude thrnf, . 
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12 FREQUENCY AND TIME MEASUREMENT 195 

12.1.1 Relationship between the Power Spectrum and the 
Phase Spectrum 

The power spectrum differs from a delta function S(f) due to the presence 
of the amplitude- and phase-noise terms, s(r) and &t), respectively, included 
in Eq. (12-1). Usually the noise modulation separates into two distinct 
components, so that one observes a very narrow feature called the carrier 
above the level of a relatively broad pedestal. The frequency that separates 
the carrier and pedestal is denoted I,. Below this frequency the spectral 
density of the carrier exceeds that of the pedestal. Assuming that the ampli- 
tude noise is negligible compared to the phase noise and that the phase 
modulation is small, the relationship between the power and phase spectra 
is given by (Walls and DeMarchi, 1975) 

V,z s?(f) s _i-e-ruJ x ‘fA if -fc</</cr 
SF(f), otherwise. 

(12-S) 

S;‘(J) is the two-sided spectrum of the phase fluctuations, which divides 
into a carrier component SFJf) and a pedestal component S&(f); f(f,) is 
given by 

(12-6) 

since abovef, the pedestal dominates the noise spectrum. The variance of the 
carrier is equal to ( V~/2)e-‘(lc), with the remaining variance in the pedestal. If 
Av, is the width of the pedestal and Av, the width of the carrier, then the 
power density in the carrier is equal to that in the pedestal when f(L) = 
In(AvJAv,). For the pedestal, one may use the 3-dB linewidth for Av, 
provided that j/T S,(f) df < In 2. Otherwise the pedestal width is estimated 
from j&z S,(f) df = In 2. For the carrier, the linewidth is estimated by 
calculating j&;2 S,,,(f) df = In 2. 

The foregoing analysis makes it possible to draw certain conclusions 
concerning detection of the carrier. We use j, df to denote the integral over 
the phase noise pedestal. If J, S&f) df < In 2, then the carrier may be resolved 
irrespective of detector bandwidth. When In(Av,lAv,) > j,S,(f)df > In 2, 
the carrier may be resolved by restricting the detection bandwidth. But when 
I, S,(f) t(f > In(AvJAv,), the carrier can no longer be distinguished from the 
pedestal since its spectral density is smaller. 

12.1.2 The IEEE Recommended Measures of Frequency Stabilit, 

By the mid-1960s the problem of the specification of precision oscillators 
had become extremely important. but there was very little uniformity among 
manufacturers, metrologists, and applications engineers in the methods of 
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performing measurements or the description of measurement results. This 
situation was complicated by the difficulty of comparing the various 
descriptions. A measure of stability is often used to summarize some 
important feature of the performance of the standard. It may therefore not be 
possible to translate from one measure to another even though the respective 
measurement processes are fully described and all relevant parameters are 
given. This situation resulted in a strong pressure to achieve a higher degree 
of uniformity. 

In order to reduce the difficulty of comparing devices measured in separate 
laboratories, the IEEE convened a committee to recommend uniform 
measures of frequency stability. The recommendations made by the com- 
mittee are based on the rigorous statistical treatment of ideal oscillators that 
obey a certain model (Barnes et al., 1971). Most importantly, these oscillators 
are assumed to be elements of a stationary ensemble. A random process is 
stationary if no translation of the time coordinate changes the probability 
distribution of the process. That is, if one looks at the ensemble at one instant 
of time, then the distribution in values for a process within the ensemble is 
exactly the same as the distribution at any other instant of time. The elements 
of the ensemble are not constant in time, but as one element changes value 
other elements of the ensemble assume previous values. Thus, it is not 
possible to determine the particular time when the measurement was made. 

The stationary noise model has been adopted because many theoretical 
results, particularly those related to spectra1 densities, are valid only for this 
case. It is important for the statistician to exercise considerable care since 
experimentally one may measure quantities approximately equal to either the 
instantaneous frequency of the oscillator or the instantaneous phase. But the 
ideal quantities approximated by these measurements may not both be 
stationary. The instantaneous angular frequency is conventionally defined as 
the time derivative of the total oscillator phase. Thus, 

o(r) = ;i; d [Znv,t + &t)], 

and the instantaneous frequency is written 

For precision oscillators. the second term on the right-hand side is quite 
small, and it is useful to define the fractional frequency’ 

1 dr#J dx 
=--=-, 

‘nv, dt dt 
(12-9) 
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where 

X(f) = Q(f)/274 (12-10) 

is the phase expressed in units of time. Alternatively, the phase could be 
written as the integral of the frequency of the oscillator: 

#(r) = &J + J-;?n[“(e) - vo] de. (12-11) 

However, the integral of a stationary process is generally not stationary. 
Thus, indiscriminate use of Eqs. (12-7) and (12-11) may violate the assump- 
tions of the statistical model. This contradiction is avoided when one 
accounts for the finite bandwidth of the measurement process. Although a 
more detailed consideration of the statistics goes beyond the scope of this 
treatment, it is very important to keep in mind the assumption that lie behind 
the statistical analysis of oscillators. In order to analyze the behavior of real 
oscillators, it is necessary to adopt a model of their performance. The model 
must be consistent with observations of the device being simulated. To make 
it easier to estimate the device parameters, the models usually include certain 
predictable features of the oscillator performance, such as a linear frequency 
drift. A statistical analysis is useful in estimating such parameters to remove 
their effect from the data. It is just these procedures for estimating the 
deterministic model parameters that have proved to be the most intractable. 
A substantial fraction of the total noise power often occurs at Fourier 
frequencies whose periods are of the same order as the data length or longer. 
Thus, the process of estimating parameters may bias the noise residuals by 
reducing the noise power at low Fourier frequencies. A general technique for 
minimizing this problem in the case of oscillators actually observed in the 
laboratory is discussed below. 

It has been suggested that measurement techniques for frequency and time 
constitute a hierarchy (Allan and Daams, 1975), with the measurement of the 
total phase of the oscillator at the peak. Although more difficult to measure 
with high precision than other quantities, the total phase has this status 
owing to the fact that all other quantities can be derived from it. 
Furthermore, missing measurements produce the least deleterious effect on a 
time series consisting of samples of the total phase. Gaps in the data al.Iect the 
computation of various time-dependent quantities for times equal to or 
shorter than the gap length, but have a negligible effect for times much longer 
than the gap length. The lower levels of the hierarchy consist of the time 
interval, frequency, and frequency fluctuation. When one measures a quan- 
tity somewhere in this hierarchy and wishes to obtain a higher quantity, it is 
necessary to integrate one or more times. In this case the problem of missing 
data is quite serious. For example. if frequency is measured and one wants to 
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know the time of a clock, one needs to perform the integration in Eq. (12-l I). 
The missing frequency measurements must be bridged by estimating the 
average frequency over the gap, resulting in a time error that is propagated 
forever. Thus, it is preferable to always make measurements at a level of the 
measurement hierarchy equal to or above the level corresponding to the 
quantity of principle interest. In the past this was rather difficult to do. 
Measurement systems constructed from simple commercial equipment suf- 
fered from dead time, that is, they were inactive for a period after performing 
a measurement. To make matters worse, methods for measuring time or 
phase had considerably worse noise performance than methods for measur- 
ing frequency. As a result, many powerful statistical techniques were 
developed to cope with these problems (Barnes, 1969: Allan, 1966). The elTect 
of dead time on the statistical analysis has been determined (Lesage and 
Audoin, 1979b). Other techniques have been developed to combine short 
data sets so that the parameters of clocks over long periods of time could be 
estimated despite missing data (Lesagc, 1983). The rationale for these 
approaches is considerably diminished today. Low-noise techniques for the 
measurement of oscillator phase have been developed. Now, commercial 
equipment is capable of measuring the time or the total phase of an oscillator 
with very high precision. Other equipment exists for measuring the time 
interval. These devices use the same techniques that were previously 
employed for the measurement of frequency and are very competitive in 
performance. 

The proliferation of microcomputers and microprocessors has had an 
equally profound e!fect on the field of time and frequency measurement. 
There has been a dramatic increase in the ability of the metrologist to acquire 
and process digital data. Many instruments are available with suitable 
standard interfaces such as IEEE-583 or CAMAC (IEEE, 1975) and 
IEEE-488 (IEEE, 1978). As a result, there has been a dramatic change in 
direction away from analog signal processing toward the digital, and this 
process is accelerating daily. Techniques once used only by national 
standards laboratories and other major centers of clock development and 
analysis are now widespread. Consequently, this chapter will focus first on 
the peak of the measurement hierarchy and the use of digital signal 
processing. But the analysis is directed toward estimating the traditional 
measures of frequency stability. Considerable attention will be paid to 
problems associated with estimating the confidence of these stability meas- 
ures and obtaining the maximum information from available data. 

The IEEE has recommended as its first measure of frequency stability the 
one-sided spectral density S,(i) of tht instantaneous fractional-frequency 
fluctuations j<t). It is simply related to the spectral density of phase Buctua- 
tions since differentiation of the time-dependent functions is equivalent to 
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multiplication of their Fourier transforms by@: 

SyC/) = wd2qf) = m!f)2uf). (12-12) 

Section 12.1.1 on the relationship between the power spectrum and the 
phase spectrum described the analog method for the measurement of a 
spectral density. If a voltage c/is the output of the oscillator, then the result of 
the measurement is proportional to the rf power spectral density. But if the 
voltage were proportional to the frequency or phase of the oscillator, then the 
result of the measurement would be proportional to the spectral density of 
the frequency or phase. The most common units of S,(f) are radians squared 
per hertz. 

Alternatively. the spectral density can be obtained by digital analysis of the 
signal. For example, the quantity S,(f) can be calculated from the Fourier 
transform of x(r). The relevant continuous Fourier-transform pair is defined 
as follows: 

X(f) = S_: x(f)e-j2nfr dr (E-13) 

and 

x(r) = _f_ 2x I _: x(/,ej’=“dJ (12-14) 

However, one does not generally have continuous knowledge of the phase of 
the oscillator. Since it is relatively easy to measure x(r) at equally spaced time 
intervals, we assume the existence of the series x1, where x, = x(lr) for integer 
values of 1. The discrete Fourier transform is defined by analogy to the 
continuous transform (Cochran er al., 1967): 

X(f) = f x(l)e-jtnff. 
I=-lc 

(12-15) 

In practice the time series has finite length 7 consisting of N intervals of 
length T, and it is not possible to compute the infinite sum. Nevertheless, it 
remains possible to compute a spectrum that is not continuous inf but rather 
has resolution AJ where 

Af = 1,‘7= 1,‘Ns. (12-16) 

The need to sum over all values of the index I is removed by assuming that the 
function X(I) repeats itself with period T. The resulting spectrum contains no 
information on the spectrum at Fourier frequencies less than l/‘T. Truncation 
of the time series also introduces spurious effects due to the turn-on and turn- 
off transients. These problems can be minimized through the use of a window 
function. The.computed spectrum is actually the square of the magnitude of 
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the window function multiplied by the desired spectrum. The use of a window 
function reduces the variance of the spectrum estimate at the expense of 
smearing out the spectrum to a small degree. With these changes but no 
window function, we arrive at the discrete finite transform 

(12-17) 

The spectral density of x(r) is computed from Eq. (12-17) by squaring the real 
and imaginary components, adding the two together, and dividing by the 
total time T: 

The digital method of estimating spectral densities has many advantages 
over analog signal processing. Most important is the fact that it may be 
computed from any set of equally spaced samples of a time series. As a result, 
the technique is compatible with other methods of characterizing the signal, 
that is, the sampled data can be stored and processed using a variety of 
algorithms. In addition, each record of length Fproduces a single estimate of 
the spectrum for each of the N frequencies Af, 2 A1; . . . , N Aj It is therefore 
possible to estimate the entire spectrum much more quickly using the digital 
technique than it would be using analog methods. The fast Fourier 
transform, a very efficient algorithm for the computation of the discrete finite 
transform, has opened the way to versatile self-contained, commercial 
spectrum analysis. It is also very straightforward to compute the spectrum 
from data acquired by computerized digital data acquisition systems. 

A result of the finite sampling rate is that the upper frequency limit of the 
digital spectrum analysis is l/25, called the Nyquist frequency (Jenkins and 
Watts, 1968). Power in the signal being analyzed that is at frequencies higher 
than the Nyquist frequency affects the spectrum estimate for lower frequen- 
cies. This problem is called aliasing. The out-of-band signal is rejected by 
only approximately 6dB per octave above the Nyquist frequency. Thus, 
when significant out-of-band signals exist, they must be reduced by analog 
filtering. One or more low-pass filters are usually sufficient for this purpose. 

As its second measure of frequency stability, the IEEE recommended the 
sample variance a:(r) of the fractional-frequency fluctuations. It is a measure 
of the variability of the average frequency of an oscillator between two 
adjacent measurement intervals. The average fractional-frequency deviation 
& over the time interval from t, to rL + T is defined as 

(12-19) 
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TIME 

FIG. 12-3 Measurement process for the computation of the sample variance. The phase 
difference between two oscillators is plotted on the ordinate. The measurement yields a set of 

frequencies averaged over equal intervals r separated by dead time T- c. 

from which it follows that 

- _ X(lk + 7) - xll3 
Yk - 

f 
(1120) 

The quality r is often referred to as the sampling time or the averaging time. 
Equations (12-19) and (12-20) are not the only way to define mean frequency. 
but they are the simplest. Other definitions lead to alternative measures of 
stability that may have desirable properties. 

Suppose that one has measured the time or frequency fluctuations between 
a pair of precision oscillators and a stability analysis is desired. The process is 
illustrated in Fig. 11-3. These are IV values of the fractional frequency j$. 
Each one is measured over a time T, and measurements are repeated after 
intervals of time IT: If the measurement repetition time exceeds the averaging 
time, then there is a dead time equal to T- T between each frequency 
measurement, during which there is no information available. 

There are many ways to analyze these data. A fairly general approach is the 
N-sample variance defined by the relation 

(a;(‘V, 7-, I)) = (A!,(‘. - ;$,eky)v (12-21) 

where the angle brackets denote the infinite time average. Frequently, Eq. 
( 12-Z 1) does not converge as N + SC, since some noise processes in oscillators 
diverge rapidly at low Fourier frequencies. This implies that the precision 
with which one estimates the variance does not improve simply as the sample 
size is increased. For this reason, the two-sample variance with no dead time 
is preferred. Also called the Allan variance, it converges for all the major 
noise types observed in precision oscillators. It may be written as 

(13-12) 
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FIG. 12-4 N-sample variance versus Allan vartancc. The two-sample varianceconverges for 
the important types of noise observed in frequency standards but the ratio of the traditional 
variance to the two-sample variance is an increasing function of sample size for flicker frequency 
noise and random-walk frequency noise. 

The dependence of the classical variance on the number of samples is shown 
in Fig. 12-4 for the case of no dead time. The quantity plotted is the ratio of 
the N-sample variance to the Allan variance. Note that u;(r) has the same 
value as the classical variance for the white-noise frequency modulation. 
However, the classical variance grows without bound for flicker-frequency 
and random-walk-frequency noises. 

One may combine Eqs. (12-20) and (12-22) to obtain an equation for a,(r) 
in terms of the time-difference or time-deviation measurements: 

a,‘(r) = (+r-‘[.x(t + 35) - 2x(t + T) + x(t)]‘). (12-23) 

N discrete time readings may be used to estimate the variance 

1 s - 2 

G;(5) z 1 (eKiT2 - 2Xi+l + wK~)~, 
2(-V - Z)r2 iz, 

(12-24) 

where i denotes the number of the measurement in the set of N and the 
nominal spacing between measurements is r. Since it has been assumed that 
there is no dead time between measurements, one can write r in Eq. (12-24) as 
an integer multiple of rO. that is, T = )?IT~, where ~~ is the smallest spacing of 
the data. In this case 

1 N-2m 

+?tro) 2 C (-Ki-2m - ZXi+, + Xi)2. 
Z(N - 34m27; i-1 

(12-25) 
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12.1.3 The Concepts of the Frequency Domain and the Time Domain 

Spectral densities are measures of frequency stability in what is called the 
frequency domain since they are functions of Fourier frequency. The Allan 
variance, on the other hand, is an example of a time-domain measure. In a 
strict mathematical sense, these two descriptions are connected by Fourier 
transform relationships (Cutler and Searle, 1966). However, for many years 
the inadequacy of measurement equipment created artificial barriers between 
these two characterizations of the same noise process. As a result, many 
specialized techniques have been developed to translate between the various 
measures of stability (Allan, 1966: Burgeon and Fischer, 1978). The preceding 
sections have demonstrated how easily both types of stability measures can 
be computed from the same data provided that the measurement process 
provides complete information. For example, both az(mr,,) and S,(m Af) can 
be computed from evenly spaced samples of x(r). However, incomplete 
information can result from either measurement dead time or interruptions in 
the data acquisition process. In these cases translation techniques remain 
valuable. 

Both the spectral density and the Allan Variance are second-moment 
measures of the time series x(t). However, it is only possible to translate 
unambiguously from the spectral density to the Allan variance, not the 
reverse. To calculate the spectral density it is necessary to use the autocor- 
relation function of the phase. The following discussion on power-law noise 
processes further demonstrates this dichotomy. As we shall see, the Allan 
variance for a fixed measurement bandwidth does not distinguish between all 
of the noise processes that are commonly observed in precision oscillators. 

12.1.4 Translation between the Spectral Density of Frequency 
and the Allan Variance 

The power-law model is most frequently used for describing oscillator 
phase noise. It assumes that the spectral density of frequency fluctuations is 
equal to the sum of terms, each of which varies as an integer power of 
frequency. Thus, there are two quantities that completely specify S,(f) for a 
particular power-law noise process: the slope on a log-log plot for a given 
range off and the amplitude. The slope is denoted by SL and thereforef’ is the 
straight line on a log-log plot that relates S,(j) toj. The amplitude is denoted 
h,. When we examine a plot of the spectral density of frequency fluctuations, 
we represent it by the addition of all the power-law processes (Allan, 1966: 
Vessot er al., 1966) with the appropriate coefficients: 

S,(f) = h,f’. : 12-26) 
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TABLE 12-l 

Correspondence between Common Power-Law Spectral Densities and the 
Auan Variaod 

Noise type Y/j 

White phase ha/’ 

Flicker phase hf 
[I .038 + 3 Inf2~,,t)J h 1 

(2%)’ ‘;i 

White frequency ho 9Wd 

Flicker frequency h-J 2 M2)h _ , 

Random-walk frquency h-J-’ t(2n)‘hmIr 

’ Where necessary for convergence the spectral density has been assumed to 
be zero for frequencies greater than the cutoff frequency I,. 

This technique is most valuable when only a few terms in Eq. (12-26) arc 
required to describe the observed noise and each term dominates over several 
decades of frequency. This situation often prevails. Five power-law noise 
processes (Allan, 1966: Vessot et al., 1966) are common with precision 
oscillators: 

(1) random-walk frequency modulation 2 = -- 7 
(2) flicker frequency modulation a= -1 
(3) white frequency modulation a= 0 
(4) flicker phase modulation a= 1 
(5) white phase modulation 2= 2 

The spectral density of frequency is an unambiguous description of the 
oscillator noise. Thus, the spectrum can be used to compute the Allan 
variance (Barnes er al., 1971): 

+I 
2 = =7 

wo f)’ I 
S,( /) sin’(&) cIJ 

0 
(C-27) * 

However, Eq. (12-27) shows that the Allan variance is very sensitive to the 
high frequency dependence of the spectral density of phase, thereby neccs- 
sitating a detailed knowledge of the bandwidth-limiting elements in the 
measurement setup. The integral has been computed for each of the power- 
law noise processes, and the results are summarized in Table 12-1 (Barnes et 
al., 1971). For I in the range -2 15 Q s 0, the Allan variance is proportional 
tor’,whcrep=-z- 1. When the log of the Allan variance is plotted as a 
function of the log of the averaging time, the graph also consists of straight- 
line segments with integer slopes. However, Table 12-l also shows that even if 

l SeeAppendixNote#8 
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the oscillator is reasonably modeled by power-law spectra, it is not practical 
to distinguish between white phase noise and flicker phase noise from the 
dependence of the Allan variance on T. In both cases ei 2 l/~*. 

12.1.5 The Modified Allan Variance 

Table 12-1 also shows that the Allan variance has very different bandwidth 
dependence for white phase noise and flicker phase noise. Therefore, these 
noise types have been distinguished by varying the bandwidth of the 
measurement system. If x(t) were measured, the noise type could be identified 
by computing the spectrum. However, both the approach of making 
measurements as a function of bandwidth and the computation of the 
spectrum can be avoided by calculating a modified version of the Allan 
variance. The algorithm for this variance has the effect of changing the 
bandwidth inversely in proportion to the averaging time (Snyder, 1981; Allan 
and Barnes, 1981). 

Each reading of the time deviation -Yi has associated with it a measurement- 
system bandwidthf, . Similarly, we can define a software bandwidthf, = fb’n, 
which is l;/n times narrower than the hardware bandwidth. It can be realized 
by averaging n adjacent .Y~s. Based on this idea it is possible to define a 
modified Allan variance that allows the reciprocal software bandwidth to 
change linearly with the sample time T: 

mod C;(T) = $ 
u 

tjltxi+2m (12-28) 

where r = ~7~. Equation (12-28) reduces to Eq. (I 2-23) for n = 1. One can see 
that mod CT:(~) is the second difference of three time values, each of which is a 
nonoverlapping average of n of the xls. As n increases the software 
bandwidth decreases as fbht . 

For a finite data set of N readings of xi (i = 1 to N), mod C;(T) can be 
estimated from the expression 

1 N-h+1 n+j-1 
mod C-$(T) z 

27*n’(N _ 3n + 1) j&l zj fxi+2n - 2xi+a + xi)2* * 

(12-29) 

which is easy to program but takes more time to compute than the 
corresponding equation (12-24) for e:(r). 

Table 12-2 gives the relationship between the time-domain measure 
mod U;(T) and its power-law spectral counterpart. In the right-hand column 
are the asymptotic values of the ratio of the modified Allan variance to the 
Allan variance. It is clear from the table that mod at(r) is very useful for white 

l SeeAppendixNote#g 
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TABLE 12-2 

Correspondence between Common Power-Law Spectral Densities and the Modified Allan 
Vari8nd 

Noise type Y/l mod +I mod ua ia1 P’ , 

white ph8se W 
h xl 1 

‘no’7 
n 

Flicker phase h,/ 
h Il.038 + 3 lttf2~&;t)] I 

I 
W’ 7 

1 

white frequency 

Flicker frequency 

Random-walk frequency 

ho 

he,/” 

h-J-’ 

h,,‘4r 0.5 

h-,(0.936) 0.674 

h,,(S.42)t 0.824 

’ Where necessary the spectral density has been assumed to be zero for frequencies greater than 
the cutoff frquency f . The constant n ir the number of adjacent phase values that are averaged 
to produce the bandwidth reduction. The values in the last two columns are for the asymptotic 
limit n - x. In practice, R only needs to be IO or larger before the asymptotic Iimit is approached 
within a few percent. When n I 1 the ratio in the last column is I in all cases 

phase modulation and flicker phase modulation, but for I s 1 the con- 
ventional Allan variance gives both an easier-to-interpret and an easier-to- 
calculate measure of stability. 

It is interesting to make a graph of I versus p for both the ordinary Allan 
variance and the modified Allan variance, such as the one shown in Fig. 12-5. 

-2 - 

FIG. 12-5 Relationship between a power-law spectral density whose slope on a log-log plot 
is I and the correspondin sample variance whoss slope on a log-lo8 plot is p. The solid line 
describes the behavior of the Allan variance, while the dashed line shows the advantage of the 
modified Alhn vrrirnce for white phase noise and flicker phase noise. 
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This graph allows one to determine power-law spectra for noninteger as well 
as integer values of a. In the asymtotic limit the equation relating p and cx for 
the modified Allan variance is 

a=-p-1 for -3<r<3. (1 I-30) 

12.1.6 Determination of the Mean Frequency and Frequency Drift 
of an Oscillator 

Before the techniques of the previous four sections can be meaningfully 
applied to practical measurements, it is necessary to separate the deter- 
ministic and random components of the time deviation x(t). Suppose, for 
example, that an oscillator has significant drift, such as might be the case for a 
quartz crystal oscillator. With no additional signal processing, the Alian 
variance would be proportional to 7 ‘. The variance of the Allan variance 
would be very small, further demonstrating that deterministic behavior has 
been improperly described in statistical terms and the oscillator’s predict- 
ability is much better than the Allan variance indicated. Unfortunately, it 
is difficult to estimate the oscillator’s deterministic behavior without intro- 
ducing a bias in the noise at Fourier frequencies comparable to the inverse 
of the record length. In practice, it has been suficient to consider two 
deterministic terms in I(C): 

x(f) = x0 + (Av/vo)t + IDt’ + x,(f) (12-31) 

The first term on the right-hand side is the synchronization error. The second 
term is due to imperfect knowledge of the mean frequency and is sometimes 
called syntonization error. The quadratic term, which results from frequency 
drift, is the most difficult problem for the statistical analysis because the Allan 
variance is insensitive to both synchronization and syntonization errors. 

For white noise, the optimum estimate of the process is the mean. 
Therefore, a general statistical procedure that can be followed is to filter the 
data until the residuals are white (Allan et al., 1974; Barnes and Allan, 1966). 
For example, at short times the frequency fluctuations of atomic clocks are 
usually white. Taking the first difference of Eq. (12-31), we find that 

j(r) = 5 + Dr + 
X,(f + 7) - x,(t) 

9 ( 12-32) 
7 

and a linear least square fit to the frequency data yields the optimum estimate 
of Av. However, the drift in atomic clocks is generally so small that the value 
obtained for D will not be statistically significant when 7 is small enough to 
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satisfy the assumption of white frequency noise. Thus, we are led to consider 
the first difference of the frequency, 

.iJtt + 7) - .tio = D + x,0 + 24 - 2x,(t + T) + x,(r) 
T T2 

. (12-33) 

Many atomic clocks are dominated by random walk of frequency noise for 
long averaging times. Thus, the first difference of the frequency data (the 
second difference of the phase data) is white, and the optimum estimate of the 
drift is just the simple mean. If instead, a linear least square fit were removed 
from the frequency data in this region of T, then the random-walk residuals 
would be biased, and it is likely that an optimistic estimate of a,(r) would be 
obtained. 

The optimum procedure would be different if the dominant noise type 
were flicker of frequency, rather than random walk. But there is no simple 
prescription that can be followed to estimate the drift in that case. 
Fortunately, a maximum likelihood estimate of the prameters for some 
typical cases has shown that the mean second difference of phase is still a 
good estimator of frequency drift in the sense that it introduces negligible bias 
in the Allan variance. Thus, in practice there is a simple prescription for 
computing the Allan variance in the presence of significant drift. Starting 
with the phase data, one forms the second difference and uses the simple 
average to estimate the mean. The value of r chosen for creating these second 
differences must be long enough so that the predominant noise process is 
random-walk frequency modulation. After subtracting this estimate, the 
second-difference data is integrated twice to recover phase data with drift 
removed, and further analysis, including the computation of the Allan 
variance, may proceed. Figures 12-6 through 12-10 illustrate the estimation 
of drift. The quadratic dependence of the phase data in Fig. 12-6 nearly 
obscures the noise. The first difference of this data produces the nearly linear 
frequency dependence shown in Fig. 12-7, and the second difference produces 
the residuals shown in Fig. 12-8, which appear to be nearly white. Rigorous 
statistical analysis of this data indicates that the first difference of the 
frequency is indeed white with 90:/, confidence. Next, the mean frequency 
difference is subtracted. Then the residuals of Fig. 12-8 are integrated twice, 
and the result is the estimate of the phase deviation with drift removed shown 
in Fig. 12-9. Fig. 12-10 illustrates the Allan variance of this data calculated by 
three techniques. The squares were computed from the data of Fig. 12-6, 
while the open circles were computed following the recommended procedure 
for estimating the drift. The validity of the approach is illustrated by the black 
dots, which are the result of a statistically optimum parameter estimation 
procedure. 
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FIG. 12-6 Measured phase difference between a frequency standard and a reference during 
a 14O-day experiment. The nearly quadratic form of the data effectively obscures the noise. 
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FIG. 12-7 One-day frequency averages obtained by taking the first differences of the data in 
Fig. 12-6. The ordinate is the fractional difference of the daily frequency from a nominal value. 
The nearly linear change in frequency with time is apparent, although the random deviations are 
visible. 

FIG. 12-8 Second diHerence of the data in Fig. 12-6. The second ditferencc operation has 
removed the nonrandom behavior and the residuals appear to be nearly white. 
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FIG. 12-9 Phase variations of the frequency standard due to the residuals. obtained by 
performing two integrations on the data of Fig. 12-8. The ordinate scale is expanded 
approximately 10 times compared to Fig. 12-6. 

-11 r 

log T(sec) 

FIG. 12-10 Logarithm of the square root of the Allan variance as a function of the 
logarithm of the averaging time for three di5ercnt computation methods. The squares were 
computed from the data of Fig. C-6 and show the e5ect of the drift. The open circles were 
computed from the data of Fig. 12-9. The closed circles were computed using an optimum- 
parameter estimation procedure. 

12.1.7 Confidence of the Estimate and Overlapping Samples 

Consider three phase or time measurements of one oscillator relative to 
another at equally spaced intervals of time. From this phase data one can 
obtain two adjacent values of average frequency and one can calculate a 
single sampk Allan variance (see Fi_n. 12-l 1). Of course, this estimate does not 
have high precision or confidence, since it is based on only one frequency 
difference. 

For most commonly encountered oscillators, the first difference of the 
frequency is a normally distributed variable with zero mean. However, the 
square of a normally distributed variable is not normally distributed. This is 
so because the square is always positive and the normal distribution is 
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FIG. 12-11 Calculation of two average frequencies j$ and j1 by measuring the phase of an 
oscillator x(r) at times I,. ra. and I,. 

completely symmetric, with negative values being as likely as positive ones. 
The resulting distribution is called a chi-squared distribution, and it has one 
“degree of freedom” since the distribution was obtained by considering the 
squares of individual (i.e., one independent sample), normally distributed 
variables (Jenkins and Watts, 1968). 

In contrast, from five phase values four consecutive frequency values can 
be calculated, as shown in Fig. 12-12. It is possible to take the first pair and 
calculate a sample AlIan variance. A second sample Allan variance can be 
calculated from the second pair (i.e., the third and fourth frequency 
measurements). The average of these two sample Allan variances provides an 
improved estimate of the true Allan variance, and one would expect it to have 
a tighter confidence interval than in the previous example. This could be 
expressed with the aid of the chi-squared distribution with two degrees of 
freedom. 

However, there is another option. One could also consider the sample 
Allan variance obtained from the second and third frequency measurements, 
that is, the middle sample variance. This last sample Allan variance is not 
independent of the other two, since it is made up of parts of each of the others. 
But this does not mean that it cannot be used to improve the estimate of the 
true Allan variance. It does mean that the new average of three sample Allan 
variances is not distributed as chi squared with three degrees of freedom. The 

‘1 t a 
f l:E 

t4 ts 

FIG. 12-12 Calculation of four frequency values j,. Jz, j,, and J. from five phag 
measurements at times r,, rr. t,. I., and 1,. The sample variance formed from 1, and jr and the 
one formed from j, and j4 are indcpndent. The sample variance formed from ~7~ and 9, is not 
independent of the other two but does contain some additional information useful in estimating 
the true sample variance. 
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number of degrees of freedom depends on the underlying noise type, that is, 
white frequency, flicker frequency. etc., and may have a fractional value. 

Sample Allan variances are distributed as chi square according to the 
equation 

x’ = (df)s;/a;. (12-34) 

where si is the sample Allan variance, df the number of degrees of freedom 
(possibly not an integer), and af the true Allan variance, which we are 
interested in knowing but can only estimate imperfectly. 

The probability density for the chi-squared distribution is given by the 
relation (Jenkins and Watts, 1968) 

1 
JJfJt2) = 2mr(df;‘2) 

(X2)df/2-1,-1*/2, 

where r(df;2) is the gamma function, defined by the integral 

J 
* 

T(r) = x’-‘e-’ dx. 
0 

(12-36) 

A typical distribution is shown in Fig. (12-13). 
Chi-squared distributions are useful in determining confidence intervals for 

variances and standard deviations, as shown in the following example. 
Suppose one has a sample variance s2 = 3.0 and it is known that this 
variance has 10 degrees of freedom. The obje.ct is to calculate a range around 
the sample value of si = 3.0 that probably contains the true value cr:. The 
desired confidence is, say, 907/,. That is, I@< of the time the true value will 
actually fall outside of the stated bounds. The usual way to proceed is to 
allocate 57,; to the low end and 5% to the high end for errors, leaving 90% in 
the middle. This is arbitrary and a specific problem might dictate a different 

FIG. 12-13 Approximate form of a typical chi-squared distribution. For IO degrees of 
freedom 5”; of the area under the curve corresponds to values of x’ less than 3.91, and an 
additional ST/, corresponds to values of 1’ greater than 18.3. 
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allocation. By referring to tables of the chi-squared distribution, one finds 
that for 10 degrees of freedom (df = 10) the 5% and 95% points correspond to 

x2(0.05) = 3.94, x*(0.95) = 18.3. (12-37) 

Thus, with 907; probability the calculated sample variances: = 3 satisfies the 
inequality 

3.94 < (df)s;/cr; < 18.3, (12-38) 

and this inequality can be rearranged in the form 

1.64 < 0; < 7.61. (12-39) 

The estimate sf = 3 is a point estimate. The estimate 1.64 < 0,’ < 7.61 is 
an inter& estimate and should be interpreted to mean that 90”/, of the time 
the interval calculated in this manner will contain the true cr:. 

12.1.8 Efficient Use of the Data and Determination of the 
Degrees of Freedom 

Typically, the sample variance is calculated from a data set using the 
relation 

(12-40) 

where it is implicitly assumed that the z,, ‘s are random and uncorrelated (i.e., 
white) and where z is the sample mean calculated from the same data set. Ifall 
of this is true, then s* is chi-squared distributed and has N - 1 degrees of 
freedom. 

Consider the case of two oscillators being compared in phase with N values 
of the phase difference obtained at equally spaced intervals T,,. From these N 
phase values one obtains N - 1 consecutive values of average frequency, and 
from these one can compute N - 2 individual sample Allan variances (not all 
independent) for T = re. These N - 2 values can be averaged to obtain an 
estimate of the Allan variance at r = T,,. 

The variance of this Allan variance has been calculated (Lesage and 
Audoin, 1973; Yoshimura, 1978). This approach is less versatile than the 
method of the previous section since it yields only symmetric error limits. 
However, it is simple and easy to use. Let A(N) be the relative difference 
between the sample .411an variance and the true value. Thus, 

s; = [i + A(N)]+). (12-41) 
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TABLE 12-3 

Variance ol the Relative DiUerencc between the Sample 
Allan Variance and the True Value (CJN)’ 

Noise type a c. 

White phase 2 3.88 
Flicker phase 1 3.88 
White frequency 0 2.99 
Flicker frequency -1 2.31 
Random-walk frequency -2 2.25 

’ N is the number of phase measurements. The result is 
accurate to better than 10:; for N larger than IO. 

The quantity A(N) has mean zero. For N larger than 10, the variance of A is 
approximately 

a’(A) = CJN. (12-42) 

Table 12-3 gives the constant C, for the five major noise types. 

Using the same set of data it is also possible to estimate the Allan variances 
for integer multiples of the base sampling interval T = mr,. Now the 
possibilities for overlapping sample Allan variances are even greater. For a 
data set of N phase points, one can obtain a maximum of exactly N - 2m 
sample Allan variances for T = mr,,. Of course only (N - l),?m of these are 
generally independent. Still, the use of all of the data is well justified since the 
confidence of the estimate is always improved by so doing. Consider the case 
of an experiment extending for several weeks in duration with the aim of 
getting estimates of the Allan variance for r values equal to a week or more. 
As always, the purpose is to estimate the “true” Allan variance as well as 
possible, that is, with as tight an uncertainty as possible. Thus, one wants to 
use the data as efficiently as possible. The most efficient use is to average all 
possible sample Allan variances of a given T value that one can compute from 
the data. This procedure is illustrated in Fig. 12-14. 

In order to calculate confidence intervals for a sample variance, it is 
necessary to know the number of degrees of freedom. This has been done by 
both analytical and Monte Carlo techniques, and empirical equations have 
been found that are accurate to l”/d for white phase, white frequency, and 
random-walk frequency modulation. The tolerance is somewhat larger for 
flicker frequency and phase modulation (Howe et al., 1981). The empirical 
equations for the degrees of freedom are given in Table 12-4. Table 12-5 gives 
the degrees of freedom for selected values of N, the tots1 number of phase 
values, and m, the number of intervals averaged. Figure 12-15 illustrates the 
number of degrees of freedom for all noise processes as a function of r for the 
case of 101 total phase measurements. 
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FIG. 12-14 Illustration of the case of r = 4z,. for which the ratio of the number of fully 
overlapping to nonoverlapping estimates of the variance is more than 8 for the 57 phase points 
shown. When the averaging time for the computation of mean frequencies T exceeds the 
sampling time rO, the number of fully overlapping mean frequencies is far larger than the oumbcr 
of nonoverlapping frequencies. In general. for large N approximately 2m times as many 
estimates of the sample variancescan be computed using the fully overlapping technique. 

TABLE 12-4 

Number of Degrees of Freedom for Calculation of the Coofideoce of the 
Estimate of a Sample Allan Variance’ 

Koix type 

White phase 

df 

(N + 1Jf.V - 2m) 

2l.V - m) 

Flicker phase 
ex+(y),n((?m + lqXIV - I))] 

White frequency 

Flicker frequency 

3(&V - 1) 2IN - 2) 4m’ --- - 
2m N 1 4m’ + 5 

2(N - 2) 

2.3N - 4.9 
for m = 1 

5N’ 

4mlrv + 3ml 
form22 

N - 2 (N - 1)’ 
Random-walk frequency - 

- 3mt.V - I) + 4m’ 

m (.V - 3)’ 

’ For T = mr,, from .\; phase points spaced r,, apart. 
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TABLE 12-5 

Number of Degrees of Freedom for Calculation of the Confidence of the Estimate of a Sample 
Allan Variance for the Major Noise Types’ 

N m 
White Flicker White Flicker Random-walk 

ph= ph= frequency frequency frequency 

9 1 3.665 4.835 4.900 6.202 
2 3.237 3.637 3.448 3.375 
4 1.ooo 1.000 1.000 1.000 

129 1 65.579 
2 64.819 
4 63.304 
8 60.310 

16 54.509 
32 44.761 
64 l.OCO 

1025 1 526.373 
2 525.615 
4 524.088 
8 521.038 

16 5 14.952 
32 502.839 
64 478.886 

128 432.609 
256 354.914 
512 1.000 

79.015 
66.284 
52.586 
37.306 
22.347 
9.986 
1.000 

625.071 
543.863 
459.041 
366.113 
269.849 
179.680 
104.743 
50.487 
17.429 

l.OQo 

84.889 110.548 
71.642 77.041 
42.695 36.881 
21.608 16.994 
9.982 7.345 
4.026 2.889 
l.ooO 1.000 

682.222 889.675 
583.622 636.896 
354.322 316.605 
186.363 156.492 
93.547 76.495 
45.947 36.610 
21.997 16.861 
10.003 7.281 
4.003 2.861 
1.000 1.000 

7.000 
2.866 
0.999 

127.000 
62.524 
29.822 
13.567 
5.631 
2.047 
1.000 

1023.000 
510.502 
253.755 
125.39: 
61.241 
29.210 
13.288 
5.516 
2.005 
l.OO?l 

’ h’ is the number of equally spaced phase points that are taken nt at a time to form the averaging 
time. 

12.1.9 Separating the Variances of the Oscillator and the Reference 

A measured variance contains noise contributions from both the oscillator 
under test and the reference. The individual contributions are easily sepa- 
rated if it is known a priori that the reference is much less noisy than the 
device under test or equal to it in performance. Otherwise, the individual 
contributions can be estimated by comparing three devices (Barnes, 1966). 
The three possible joint variances are denoted by 0;. G$, and ai, while the 
individual device variances are G:, c$, and oz. The joint variances are 
composed of the sum of the individual contributions under the assumption 
that the oscillators are independent: 

(E-43) 
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FIG. 12-l 5 Number ofdegrees of freedom as a function of averaging time for the case of 101 
phase measurements: The heavy broken line is for random-walk frequency noise. the light 
broken line is for flicker frequency noise. the dotted line is for white frequency noise. the heavy 
solid line is for flicker phase noise, and the light solid line is for white phase noise. 

An expression for each individual variance is obtained by adding two joint 
variances and subtracting the third: 

a’ = &J; + a: - ajz), 

rJ; = j(c7,k + 0; - a$, (12-44) 

at = #k + cr: - 06). 

This method works best if the three devices are comparable in performance. 
Caution must be exercised since Eqs. (12-44) may give a negative sample 
Allan variance despite the fact that the true Allan variance is positive definite. 
This is possible because the confidence interval of the estimate is sufficiently 
large to include negative variances. Such a result is an indication that the 
confidence intervals of the sample Allan variances are too large and that 
more data is required. 

12.2 DIRECT DIGITAL MEASUREhlEiVT 

12.2.1 Time-Interval Measurements 

A common technique for measuring the phase difference between oscil- 
lators having nearly equal nominal frequencies is the use of direct time- 
interval measurements. In this section and those that follow, the symbols vIo 
and vLO are used to indicate the nominal values of vi and v2, respectively. In 
the simplest form of this technique, a time-interval counter is started on some 
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FIG. 12- 16 The phase difference measured by a time-interval counter is the phase difference 
between the start signal and the stop signal modulo the period of the stop signal. 

arbitrarily selected positive-going zero crossing of the signal from one 
oscillator (started on v,~ at time tr) and stopped in the next positive-going 
zero crossing of the second oscillator (stopped on vzo at time tz). The 
measured time difference is 

x20,) - x,0,) 2 -fw + ho - bJ/V10lr (U-45) 

where P is the reading of the time-interval counter and T, the period of its 
time base (Allan et al., 1974). The units of the time difference is seconds of 
oscillator number 1. Equation (12-45) demonstrates an important character- 
istic of both time- and phase-difference measurements. Because of distortion 
the phase of an oscillator is generally not well known except at zero crossings. 
Thus, the quantity usually measured is x2(t2) - x,(t,). However, ail analysis 
techniques require the phase difference at the same time, and the translation 
requires a correction that takes into account the difference in frequency 
between the two oscillators. This correction is the reason for the second term 
in the brackets on the right-hand side of Eq. (12-45). 

The simple scheme described above measures a maximum accumulated 
phase difference of one cycle of the signal. When the phase difference exceeds 
one cycle the counter reading is periodic, as shown in Fig. 12-16. This 
ambiguity can be reduced by dividing the signals from each oscillator before 
the time-interval measurement. The complete system is shown in Fig. 12-17. 
The effect of the divider is to increase the time interval before an ambiguity 

FIG. 12-17 Schematic diagram ol the dividers used in conjunction with a time-interval 
counter to increase the maximum measurable phase diaerence to IV cycles of the stop signal. 
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occurs to Nj$(j, where N is the divisor. Such measurement systems are used 
at many standards laboratories for the long-term measurement of atomic 
clocks, whose output is usually divided down to 1 pulse/set. Since time- 
interval counters with resolution better than 0.1 nsec are available, this 
measurement scheme is suitable for long-term performance monitoring, 
yielding frequency-measurement precision of IO-” for l-day averages. 

12.2.2 Frequency Measurements 

Average frequency is measured most directly using a frequency counter. 
Used this way, the counter determines the number of whole cycles M 
occurring during a time interval 7 given by the counter’s time base. Thus 

40; 7) = (M + AM)/7 2: M/7, (12-46) 

where C(r,: t2) denotes the average frequency over the interval from f, to cZ 
and AM, the fractional cycle, is not measured by the counter. The starting 
time is arbitrarily called t = 0. Thus, the quantization error is given by 

Av,/(v) < l/M. 

12.2.3 Period Measurements 

For low frequencies, the number of cycles counted may be small and the 
quantization error can be very large. By measuring the period instead of the 
frequency, it is possible to decrease the error without increasing the duration 
of the measurement. A period counter measures the duration of M whole 
cycles of the signal as N cycles of the time base 75,. The fraction of a cycle AN 
is not measured. Thus, we have 

and therefore 

A4 = $0: M/v&V + AN)7,, (12-48) 

C(O; M/v,,) I M,‘Ns, 

and the quantization error is 

(12-49) 

Avo/(v) < l/N. (E-50) 

Frequency measurements are almost never used to characterize precision 
oscillators, but period measurements are very common. A straightforward 
extension of this method eliminates the bias potentially introduced by the 
quantization error and permits the measurement of accumulated phase. The 
counter must be capable of being read without halting the counting process. 
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FIG. 12-l 8 Two-counter system to eliminate dead time in period measurements. The two 
counters alternately count the number of cycles of the time base in N periods of the oscillator 
under test. 

Alternatively, a second counter may be used to begin counting the same time 
base when the first counter stops. The second approach is illustrated in Fig. 
12-18. This type of measurement system is sometimes called a chronograph. 

12.3 SEI\;SITIVITY-ENH.4SCE~lE~~ METHODS 

12.3.1 Heterodyne Techniques 

It is possible for oscillators to be very stable, and values of a,,(~) can be as 
small as lo-l6 in some state-of-the-art standards. Thus, one often needs 
measuring techniques capable of resolving very small fluctuations in oft). One 
of the most common techniques is the heterodune or beat-frequency 
technique. In this method the signal from the oscillator under test is mixed 
with a reference signal of almost the same frequency so that one is left with a 
lower average frequency for analysis without reducing the frequency (or 
phase) fluctuations themselves. 

In principle, it is possible to analyze the most general measurement case, 
where no restrictions are placed on the average frequency or phase difference 
between the two oscillators under test. Equation 12-l can be inverted as 

27r~,t + b(t) = arcsin[L’(r)/VJ (12-51) 

and used to obtain the series 4(m7) by sampling the voltage at regular time 
intervals. This direct technique is not used, because it requires unobtainable 
mixer performance characteristics. The high-level rf signals that are required 
for low-noise phase measurements produce significant harmonic distortion, 
so that the output of the phase detector deviates si_gnificantly from a sine 
wave. Furthermore, the distortions are generally sensitive to level and 
environmental perturbations. However, the phase relationships among the 
various harmonics are very stable, so it is possible to use the repetition of one 
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point on the waveform in order to count cycles. The positive-going zero 
crossings are normally chosen in order to provide immunity from changes in 
both the amplitude and symmetry of the waveform. 

Consider two signals whose frequency difference is much less than the 
frequency of either oscillator: 

V,(t) = VI0 sin[2nv,or + $J~(C) + 4~~3 

and (12-52) 

V2W = ho 4?~v20t + 4~~0) + 4d 
where lvi,, - vzol Q vIo and the constants $to and &o represent the nominal 
phases of the two signals. 

Suppose that the two signals are mixed in a linear product detector and 
filtered so that the signal at the sum frequency v,~ + vzo is highly attenuated. 
The result is 

w = KJ CO~C274V,o - v20)r + 410 - 420 + 910) - 4Jtw1, (12-53) 

which may be characterized by any of the measurement techniques discussed 
in Section 12.2. The amplitude V, of the mixer output is a function of the 
mixer design, the input amplitudes, and the output termination (Walls er al., 
1976). Using the definition (12-lo), we find that for the heterodyned signal 

x,(t) = (1,2xv,) A+(t), (12-54) 

where 

VH = Iv10 - v201 (12-55) 

and 
A&) = 4,(r) - &(t). (12-56) 

Equation (12-54) may be rewritten as 

X”(f) = (volv,)xW, (12-57) 

from which we conclude that a given phase change corresponds to a larger 
time deviation for the heterodyne signal than for the original signal. As a 
result, the quantization error for the period measurement technique is 
reduced by the factor vH/vo. 

12.3.2 Homodpne Techniques * 

The limit of the heterodyne method, called homodyne, occurs when 
vIo = v2,,. In this case the output of the phase detector is given by 

V(t) 2 vocosc4,o - 420 + 9,(f) - La2Wl. (12-58) 

a See Appendix Note # 6 
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The analysis of phase noise is accomplished by arranging that 
4 10 - &zo = n/2, which can be achieved with a phase shifter. Then, 

V(r) I - V, SinChW - 42(01 = M42(f) - fhW1. (E-59) 

There are various methods by which one can control the signal Vz(t) so that 
“10 = “20 without producing significant correlation between 42(r) and t&(t). 
When any one of these methods is used, it is possible to use V(r) as a measure 
of&t). Two methods, delay lines and phase-locked loops (Gardner, 1966), are 
described below. 

12.3.2.1 DISCRIMINATOR AND DELAY LINE 

The circuit of a discriminator or delay-line system for measuring phase 
noise is illustrated in Fig. 12-19. The delayed signal is given by 

V2(r) = V,(r - td) = V,, sin[2xvIo(t - cd) + &(t - td) + dlo + 4,]. 
(12-60) 

When the phase shifter is set for quadrature, 4, - 27r~,~t., = x:2 and 

Vzw = V~osin[2xv,ot + 4,(r - cd) + dlo + x,2]. (12-61) 

The output of the phase detector is given by 

V(t) = Kd410 - td) - dJ,m (12-6’) 

Substituting Eq. (12-62) into Eq. (12-20). we obtain 

.W - td: r) = - V(t),:‘2xr,V,r, (12-63) 

and we see that the delay-line method can be used to produce samples of 
j(mr,,) by varying the delay time. However, the technique is used more 
frequently with a fixed delay by restricting its application to the region of T 
much greater than the delay time, so that j$ - cd: r) is a good approximation 
for the instantaneous frequency. Under this assumption spectrum analysis of 

PHASE SHIFTER 
DELAY LINE 

FIG. 12-19 A delay-line phase-noise-measurement system. When the phase shifter is 
adjusted so that VJr) is in phase quadrature with Vo(r), the output of the phase detector is 
approximately equal to the instantaneous frequency deviation of the oscillator. The spectral 
density of the source may be estimated for Fourier frequencies small compared to the inverse of 
the delay time. 
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the signal from the mixer can be used to estimate the spectral density of the 
frequency fluctuations: 

Frequency discriminators are applied in an analogous fashion. A resonant 
circuit is often used to provide discrimination since it produces a phase shift 
proportional to the frequency deviation from the resonant frequency. For 
example, the phase shift on reflection from a resonance with loaded quality 
factor Q is 

t$ = arctan(lQy) z ~QJ, (12-65) 

provided that the frequency deviation is small compared to the bandwidth of 
the resonance and the applied signal is nearly at the center frequency of the 
discriminator. This can be accomplished either manually or with a frequency- 
locked loop. The design of such a loop is similar to the phase-locked loop of 
the next section. Once again, one can spectrum analyze the signal from the 
mixer to obtain 

for f B v,,/Q. 

The noise floor for measurements made with either a delay line or discrimi- 
nator normally results from white voltage noise in the analysis circuitry and 
is independent of the Fourier frequency. We denote the noise floor S,,, 
(minimum) and find the noise floor for frequency or phase measurements by 

S,(noise limit) 4 = i S,(noise limit) 4 
f 

= 7 S,,&ninimum). 
f-('Q) 

(12-67) 

Consequently, the discriminator or delay-line technique is limited in sensi- 
tivity since the output voltage is proportional to the frequency deviations. 
Greater sensitivity is possible using two oscillators in a phase-locked loop. 
The noise in the reference is an important consideration, even though the 
reference is passive in the case of a discriminator or a delay line. If the 
oscillator has sufficiently low noise, then the circuits described measure the 
variations of the discriminator center frequency or the delay variations in the 
delay line. 

12.3.2.2 PHASE-LOCKED LOOP 

The block diagram for the most general phase-locked loop that will be 
considered here is shown in Fig. 1 2-20. The noise voltage summed into the 
loop is a schematic way of representing d,(r), the open-loop phase noise of the 
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FIG. 12-20 Block diesram of a phase-locked loop. The order of the loop is determined by 
the filter transfer function. For convenience, noise in the oscillator under test is introduced at the 
summing junction. 

oscillator under test. Phase noise in the reference oscillator is denoted by 

The purpose of using a phase-locked loop is simply to guarantee that the 
two oscillators are, on the average, in phase quadrature. When the oscillators 
are near quadrature, the voltage output of the phase detector is proportional 
to the difference in phase between the two output signals. 

Analysis of the phase;locked loop yields the result 

where G,,(s) is the open-loop transfer function defined by 

(12-69) 

and d,,(s) and &(s) are the Laplacc transforms of the corresponding time- 
varying quantities. We can also calculate the voltage output of the phase 
detector, 

b(s) = KiC4,Ddd - 4aWl 
1 + G,,(s) ’ 

as well as the feedback voltage to the varactor, 

q(s) - F(s)vys) = gf-g C4,rcAs) - O&)1. 
*q 

(12-70) 

Assuming that the phase noise of the two oscillators is not correlated, 

(12-71) 

6-d 
(w) + SJO)]. (12-73) 
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FIG. 12-21 Circuit diagram of the most common loop filter for a second-order phase- 
locked loop. Resistor R2 is required for stable operation. Capacitor C provides the low- 
frequency gain needed to reduce the phase errors of the first-order loop. 

FIG. 12-22 Bode plot for the loop filter of Fig. 12-21. 

Thus, if we know the behavior of G&U), then we can relate the measured 
spectrum of the voltage at the output of the phase detector or at the varactor 
tuner ‘to the sum of the spectral densities of the phase noise of the two 
oscillators. 

The loop filter is often chosen to be a pure gain. The resulting first-order 
loop has a significant drawback: the two oscillators are offset from quadra- 
ture by a phase shift proportional to their open-loop frequency difference. In 
order to maintain system calibration, the operator must remove the fre- 
quency offset from time to time. This problem can be eliminated by using a 
second-order loop. Figure 12-21 illustrates one loop filter that can be used to 
achieve the desired frequency response. The transfer function of this filter is 

F(s) = (1 + sr&/sr,, (12-74) 

where rz = R2C and TV = R,C. Figure 12-22 shows the Bode plot of the 
frequency-response function of this filter. Substitution of Eq. (12-74) into Eq. 
(12-69) yields the open-loop frequency-response function 

G&-4 = - 
w.’ + 2j<w,o 

w2 ’ (12-75) 

where 

and 

0, = [K&/T*y (12-76) 

; = +szw,. (11-77) 
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FIG. 12-23 Bode plot of the open-loop frequency-response function for a phase-locked loop 
having the loop filter of Fig. 12-21. Parameters were chosen to illustrate a stable condition. 

The first requirement to be satisfied by the loop parameters is that the 
closed loop be stable. Since the transfer function G,,(s) has no poles or zeros 
for s > 0, a sufficient requirement for the phase-locked loop to be stable is 
that the slope of the Bode plot of IG.,(jo)l be less steep than - 12 dB/octave at 
the point where IG,,(@)l = 1. The Bode plot of IG&o)l is shown in Fig. 
12-23 for a case where the loop operation is stable. 

It is desirable for the loop to be nearly critically damped, that is, { = 1. At 
critical damping the natural frequency of the loop is related to r2 by 

%:=t = 2jT2. 

Under the same conditions the unity gain frequency is 

(12-78) 

w.c=1 = 4.12/?2. (12-79) 

The second requirement to be satisfied by the phase-locked loop is related 
to the accuracy with which spectral-density measurements can be made. 
Substitution of Eq. (12-75) into Eq. (12-72) yields 

sp.d(4 = 
Kgo” 

(w2 - al;)’ + 4;‘o*w,z CS,&) + L&41. ( 1 Z-80) 

Since the proportionality factor has a high pass response, it is possible to use 
an essentially constant calibration to relate S,,(m) and S,(o). For example, if 
we require that 

S&J) s K&J”) + sO,bil (12-81) 

with no more than lop/, error for all Fourier frequencies greater than 
2~ rad,‘sec, then for the critically damped loop the requirement on r2 is 
-r2 > 1.4 sec. 
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The third requirement on loop performance is that the frequency offset 
between the two oscillators produce negligible phase shift of the oscillators 
from quadrature. In the ideal loop the phase error for a frequency error Av 
introduced at time t = 0 is 

d error = 2n Avt eman’. 

However, in the actual circuit there is a finite phase error due to the limited 
loop gain of the amplifier of Fig. 1 2-21. Nevertheless, the phase error is 
reduced by lo5 compared to its value for a first-order loop. Typically, the 
error is less than the residual phase error due to the voltage offset at the mixer 
output and should be much less than lo. 

The feedback loop reduces the sensitivity of the system for measurements 
of the phase spectral density for Fourier frequencies less than the unity-gain 
frequency of the phase-locked loop. One way to avoid this problem is to 
utilize the feedback voltage V,. Substituting Eq. (12-75) into Eq. (12-73). we 
find that 

S,(o) = 
2744 

(‘X2 - 4c2w5w2) CSy,.,(o) + s&.qJ. - co;)2 + 4&~,2 
(12-82) 

For this case, the proportionality factor has a low pass response and a 
constant calibration factor may be used to relate S&J) to S,(o). 

12.3.3 Multiple Conversion Methods 

Quite often the beat frequency between the signal under test and the 
laboratory reference is unsuitable or inconvenient for frequency-stability 
measurements. The frequency may be too high for the available counters or 
the heterodyne factor may be too small to yield the required noise enhancc- 
ment. Under these circumstances a second mixing stage in series with the first 
can be used to produce the desired beat frequency. On the other hand, the 
direct beat frequency between two oscillators may be too small. For example, 
the frequencies of commercial cesium-beam frequency standards are usually 
so close together that the beat frequency between two devices would be near 
1 cycle/day. making it impossible to observe the stability at shorter times. 
This limitation can be overcome by the use of two parallel mixing stages. 

13.3.3.1 FREQUENCY SYNTHESIS 

A commercial frequency synthesizer is usually the most convement way to 
produce arbitrary reference frequencies for stability measurements. A mixing 
stage preceding the synthesizer can be used both to bring the signal into the 
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FIG. 12-24 UK of frequency synthesis to measure oscillators whose frequency differs 
significantly from the available low-noise reference. It may be necessary to use a frequency 
multiplier to bring the signal into the range of the available synthesizer or to overcome the 
synthesizer’s phase noise. 

appropriate range and to enhance the oscillator noise compared to the short- 
term phase noise of the synthesizer. Figure 1 2-24 demonstrates both aspects 
of the technique. 

The initial mixing stage from the microwave frequency to the rf results in a 
substantial heterodyne factor, 77.5 for the example chosen. The output of the 
first conversion stage lies within the range of low-noise commercial frequency 
synthesizers, which makes it possible to obtain a fixed, low beat frequency 
over a wide range of input frequencies. The initial mixing stage also reduces 
the frequency synthesizer’s contribution to the measurement-system noise. 
Figure 12-25 shows the typical phase excursions of a high-quality commercial 
synthesizer operated near 5 MHz. 

Under some circumstances a frequency divider may be used to provide 
the signal for the second mixing stage! as shown in Fig. 12-26. This technique 
has the disadvantage of requiring a custom divider but results in much 
lower measurement noise than the direct use of a synthesizer with a single 
heterodyne stage. 

lay 

-16*0600 
TIME (SEC) 

FIG. 12-25 Typical phase excursions of a commercial frequency synthesizer. 
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REFERENCE 

FIG. 12-26 Use of a simple divider as a substitute for a commercial frequency synthesizer in 

a heterodyne measurement system. Better noise performance can result from the initial mixing 

stage. 

12.3.3.2 THE DUAL-MIXER TIIME-DIFFERENCE 
TECHNIQUE 

There is no best answer to the question of how to make frequency-stability 
measurements. However, by combining versatility with low-noise perform- 
ance, the dual-mixer time-difference technique (Cutler and Searle, 1966: Allan 
and Daams, 1975) shown in Fig. 12-27 comes close to the ideal. The ori@nal 
motivation for this method was to use a transfer oscillator and two mixers in 
parallel to permit short-term frequency-stability measurements between 
oscillators that have an inconveniently small frequency difference. The 
transfer oscillator is most easily realized with a frequency synthesizer locked 
to one of the oscillators, designated oscillator 1 in Fig. 12-27. By convention 
the frequency of the synthesizer is set low compared to the oscillator under 
test, so we write the frequency of the synthesizer as 

v, = v,(l - l/R). (12-83) 

The constant R is equal to the heterodyne factor, which can be seen by 
calculating the beat frequency between oscillator 1 and the synthesizer: 

VBl = v, - v, = v,/R. (E-84) 

OSCILLATOR 1 

TIME-INTERVAL 
P 

OSCILLATOR 2 

FIG. 12-27 A dual-mixer measurement system. The scalars measure the number of whole 

cycles of elapsed phase. while the time-interval counter measures the fractional cycle. 
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The combination of oscillator, frequency synthesizer, and mixer functions as 
a divider and scaler 1 functions as the system clock, recording elapsed time in 
units of cycles of oscillator 1. 

The signals from oscillators 1 and 2 are represented according to Eq. 
(12-52) with r#~,,, = &e = 0, and the signal from the synthesizer is written 

v,(t) = V,~cos[2m,I)t + t#gt)]. (12-85) 

The phase of the synthesizer retards nearly linearly in time compared to the 
phase of oscillators 1 and 2. At time t, the synthesizer reaches phase 
quadrature with oscillator 1 and the beat signal crosses zero (in the positive 
direction), producing a pulse from the zero-crossing detector and starting 
the time-interval counter. At a later time tN the continued sweep of the 
synthesizer has brought it into quadrature with oscillator 2, and a pulse is 
produced that stops the time-interval counter. The phase difference between 
the oscillators can be written in terms of the three counter readings: 

&(tJ - f#gfM) = 2(N - M)n - Zn[v’,,(r,: t/d]TcP, (12-86) 

where N is the reading of scaler 2, M the reading of scaler 1, P the reading of 
the time-interval counter, and ?5, the period of its time base (Stein er al., 1983). 
Comparison with Eq. (12-45) for direct time-interval measurements reveals 
that the role of the scalers is to accumulate the coarse phase di!ference 
between the oscillators, while the time-interval counter provides fine-grain 
resolution of the fractional cycle. This process is illustrated in Fig. 12-28. The 
advantage of the technique over direct time-interval measurements is that the 
noise performance is improved by the large heterodyne factor. allowing time 
resolution of 0.1 psec to be obtained. The synthesizer degrades the noise 
performance very little since it contributes to the noise only over the interval 
7,P. 

TIME 

FIG. 12-28 Total elapsed phase measured bj the dual-mixer system of Fig. 12-27 (solid 
line). This phase measurement consists of IWO components: the number of full cycles that have 
elapsed is the step function plotted as a dashed line: the fractional cycle is the saw-tooth function 
plorted as open circles. 
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The average beat frequency v’ , & y: tN) cannot be known exactly, but it may 
be estimated with sufficient precision if it changes slowly compared to the 
interval between measurements. If the primed and unprimed variables 
represent two independent measurements, then 

I,,(t,: tx) f (N’ - N)/[R(M’ - M)/vio + r&P - I’)]. (12-87) 

12.3.3.3 FREQUENCY MULTIPLICATION 

A frequency multiplier produces n full cycles of the output signal for each 
cycle of the input signal, where n is an integer determined by the design of the 
device. Such a device is also a phase multiplier, that is, the total phase 
accumulation of the output signal is n times as great as the phase accumu- 
lation of the input signal: 

@ wt = 2nv,,t + &t(t) = 2R(nviJt + +(t)- (E-88) 

It follows that the spectral density of the output signal is enhanced by a factor 
of n2 compared to the input signal, 

making it easier to perform the necessary noise measurements. Similarly, it is 
also easier to make Allan-variance measurements. If the oscillator under test 
and the reference are both multiplied by the same factor, the beat frequency 
will be n times larger than with no multiplication but the heterodyne factor 
will be the same. The zero crossings that must be detected by the counter 
have n times higher slope and more easily overcome the voltage noise in the 
counter trigger circuits. The ability to measure frequency stability is only 
enhanced if the multipliers have extremely low phase noise themselves. This is 
the case for many modem multipliers that are triggered by the zero crossings 
of the input signal. As a result, the use of multipliers can reduce the 
performance requirements on the phase detector and the following low-noise 
amplifiers. 

12.4 CONCLUSION 

The IEEE recommendations have achieved the goal of introducing 
substantial uniformity in the specification of oscillator performance. The 
Allan variance and the one-sided power spectral density of phase have proved 
sufficient to evaluate oscillators for all common applications. In a few c3ses 
more specialized measures are helpful in relating performance to the specific 
application. For example, the rms time-prediction error is helpful in judging a 
clock’s ability to keep time over long intervals (Allan and Hellwig, 1978). 
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However, the specialized performance measures are generally calculable in 
terms of the IEEE recommended measures. 

Significant progress has been made during the last 15 years in measure- 
ment techniques and data processing. These advances have obscured the 
dividing line between the frequency domain and the time domain. Today the 
spectral density and the variance are most often computed from the identical 
input data set, the equally spaced time series of the phase deviations. The 
choice of a specific measurement setup can be made mostly on a cost versus 
performance basis. Perhaps the biggest advance in commercially available 
equipment is the introduction of heterodyne measurement techniques for 
time-domain (counter-based) measurements. As a result, the noise perform- 
ance of these systems has improved dramatically. 

One recommendation that should be made is to perform measurements as 
high up in the measurement hierarchy as possible. Direct measurement of the 
phase deviation is most desirable. This approach places the largest share of 
the burden on the measurement equipment, minimizes long-term errors, and 
maximizes data processing flexibility. 
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Time and Frequency (Time-Domain) Characterization, 
Estimation, and Prediction of Precision 

Clocks and Oscillators 
Invited Paper 

DAVID W. ALLAN 

Abstract-A tutorial review of some time-domain methods of char- 

acterizing the performance of precision clocks and oscillators is pre- 

sented. Characterizing both the systematic and random deviations is 

considered. The Allan variance and the modified Allan variance are 

defined, and methods of utilizing them are presented along with ranges 

and areas of applicability. The standa,rd deviation is contrasted and 

shoun not to be. in general. a good measure for precision clocks and 

oscillators. Once a proper characterization model has been developed, 

then optimum estimation and prediction techniques can be employed. 

Some important cases are illustrated. As precision clocks and oscilla- 

tors become increasingly important in society. communication of their 

characteristics and specifications among the vendors, manufacturers. 
design engineers. managers, and metrologists of this equipment be- 

comes increasingI> important. 

INTRODUCTION 

66 

w 

H.\T THEN.” asked St. Augustine, “is time? 
If no one asks me. I know what it is. If I wish 

to explain it to him who asks me, I do not know.” Though 
Einstein and others have taught us a lot since St. Augus- 
tine. there are still many unanswered questions. In partic- 
ular. can time be measured? It seems that it cannot; what 
is measured is the time di$erence between two clocks. 
The time of an event with reference to a particular clock 
can be measured. If time cannot be measured, is it phys- 
ical, an abstraction, or is it an anifact? 

We conceptualize some of the laws of physics with time 
as the independent variable. We attempt to approximate 
our conceptualized ideal time by inverting these laws so 
that time is the dependent variable. The fact is that time 
as we now generate it is dependent upon defined origins. 
a defined resonance in the cesium atom. interrogating 
electronics. induced biases. timescale algorithms. and 
random perturbations from the ideal. Hence, at a signifi- 
cant level. time-as man generates it by the best means 
available to him-is an artifact. Corollaries to this are that 
every clock disagrees with every other clock essentially 
always. and no clock keeps ideal or “true” time in an 
abstract sense except as we may choose to define it. Fre- 
quency or time interval. on the other hand. is fundamental 
to nature: hence the definition of the second can approach 

Sl~nu~~npt rex:bcd Mar I I. 19Y7: revised June 15. 1987. 
The wrhor 15 u:rh the Time and Frequency Division. National Bureau 

of Sumlards. 315 Broadwa!. Boulder. CO 80303. 
IEEE Lag Sumbcr 87 16461. 

the ideal-down to some accuracy limit. Noise in nature 
is also fundamental. Characterizing the random variations 
of a clock opens the door to optimum estimation of en- 
vironmental influences and fo the design of optimum com- 
bining algorithms for the generation of uniform time and 
for providing a stable and accurate frequency reference. 

Let us define V(r) as the sine-wave voltage output of a 
precision oscillator: 

V(r) = V. sin @P(t) (1) 

where @ ( r) is the abstract but actual total time-dependent 
accumulated phase starting from some arbitrary origin @(I 
= 0) = 0. We assume that the amplitude fluctuations are 
negligible around V,. Cases exist in which this assump- 
tion is not valid, but we will not treat those in the context 
of this paper. This lack of treatment has no impact on the 
development or the conclusions in this paper. Since infi- 
nite bandwidth measurement equipment is not available 
to us, we cannot measure instantaneous frequency; there- 
fore v(r) = (I /2n) d+/dr is not measurable. We can 
rewrite this equation with y. being a constant nominal fre- 
quency and place all of the deviations in a residual phase 
4(r): 

V(f) = V. sin (27ruor + d(r)). (2) * 

We then define a quantity F(I) = (v(r) - v~)/Y,-,. which 
is dimensionless and which is the fractional or normalized 
frequency deviation of v(r) from its nominal value. In- 
tegrating y(r) yields the time deviation x(r), which has 
the dimensions of time 

., 
x(r) = Oy(r’) dr’. 

s 
(3) 

From this, the time deviation of a clock can be written as 
a function of the phase deviation: 

40) 
x(r) = -. 

2;iYO 
(4) 

SYSTEMATIC MODELS FOR CLOCKS AND OSCILLATORS 

The next question one may ask is why does a clock 
deviate from the ideal? We conceptualize two categories 

8 See Appendix Note X 11 
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Fig. I. Frequency .v( I) and time X(I) deviations due to frequency offset 
and to frequency drift in clock. (a) Fractional frequency error versus 
time. (b) Time error versus time. 
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Fig. 2. Nominal values for temperature coefficient for frequency stan- 
dards: QU = quartz crystal. RB = rubidium gas cell, H = active hy- 
drogen maser, H( pas) = passive hydrogen maser, and CS = cesium 
beam. 

OSCILLATOR 

cs Id QU RB Ii H<par) I 

Ido 

YltNETlC =:ELJ SENS,II”,~” / i 
Fig. 3. Nominal values for magnetic field sensitivity for frequency stan- 

dards: QU = quartz crystal. RB = rubidium gas cell, H = active hy- 
drogen maser, H (pas) = passive hydrogen maser, and CS = cesium 
beam. 

OSCILLATZR 

of reasons, the first being systematics such as frequency 
drift (D). frequency offset ( yO), and time offset (x0). In 
addition. there are systematic deviations that are often en- 
vironmentally induced. The second category is the ran- 
dom deviations c(t). which are usually not thought to be 
deterministic. In general, we may write 

S(f) = x0 + yor + l/2 Df' + c(t). (5) * 
Though generally useful, the model in (5) does not apply 
in all cases; e.g.. some oscillators have significant fre- 
quency-modulation sidebands, and in others the fre- 
quency drift D is not constant. In some clocks and oscil- 
lators. e.g.. cesium-beam standards. setting D = 0 is 
usually a better model. 

Note that the quadratic D term occurs because x(r) is 
the integral of .v( t). the fractional frequency. and is often 
the predominant cause of time deviation. In Fig. 1 we 
have simulated two systematic-error cases: a clock with 
frequency offset. and a clock with negative frequency 
drift. Figs. 2-6 summarize some of the important system- 
atic influences on precision clocks and oscillators. In ad- 
dition to Figs. 1-6, important systematic deviations may 
include modulation sidebands, e.g., 60 Hz, 120 Hz, daily, 
and annual dependence% which can be manifestations of 
environmental effects such as deviations induced by vi- 
brations, shock, radiation, humidity, and temperature. 
l !$ee Appendix Note X 12 

RB H H(pcr) cs 

Fig. 4. Nominal capability of frequency standard to reproduce same fre- 
quency after period of time for standards: QU = quartz crystal. RB = 
rubidium gas cell, H = active hydrogen maser, H(pas) = passive hy- 
drogen maser. and CS = cesium beam. 

OSCILLATOR 

Fig. 5. Nominal capability for frequency standard to produce frequency 
determined by fundamental constants of nature for standards: QU =i 
quartz crystal, RB = mbidium gas cell, H = active hydrogen maser. 
H (pas) = passive hydrogen maser. and CS = cesium beam. 
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TABLE 1 
APPLICABLE OSCILLATORS AND RANGE OF AFPLICABILITY 

649 

Typical Noise Types 
u Name cs H-Active H-Passive Qu Rb 

2 white-noise PM SlooS s I ms 
I flicker-noise PM 51 s 
0 white-noix FM 2 10 s 100ss7r104s r1s 219 

- I flicker-noise FM z days Zlo’S L days 21s 2 10’ 
-2 random-walk FM z weeks z weeks L weeks zh 2 days 

OSCILLATOR 

. I ,  - . . : t . . i  ;*fc,E<v &,‘- , .  01. 

Fig. 6. Nominal values (ignoring sign) for frequency drift for frequency 
standards: QU = quartz crystal, RB = rubidium gas cell. H = active 

hydrogen maser, H (pas) = passive hydrogen maser, and CS = ccsium 
beam. 

then the average fractional frequency for the ith measure- 
ment interval is 

(6) 

where - r. over yi denotes the average over an interval ro. 
We can thus construct a set of discrete frequency values 

from such a time-difference data set. If the standard de- 
viation is calculated for this set of values, one can show 
that for some kinds of power-law spectra encountered in 
precision oscillators the standard deviation is divergent 
[ 11, [2], [S], i.e., it does not converge to a well-defined 
value and is a function of data length. Hence the standard 
deviation is seldom useful and can be misleading in char- 
acterizing clocks. An IEEE subcommittee has recom- 
mended S,( f ) in the frequency domain and a measure 
U:(T) in the time domain [ 11. S,,( f ) is the one-sided 
spectral density of y as a function of Fourier frequency f. 
The latter is often called the Allan variance or two-sample 
variance. The convergence of uY ( P) has been verified [ l]- 
[4] for the power law spectra of interest in precision clocks 
and oscillators. The measure u:(r) is defined as [l] 

uf(7) = f ((Ay,)*) 
Fig. 7. Simulated random processes commonly occurring in output signal 

of atomic clocks. Power law spectra S( f ) are proportional to w to some * 
where A? is the difference between adjacent fractional exponent, where f is Fourier frequency ((w- =-2x/) and S,(f) = 

w’S”( f)). 

RANDOM MODELS FOR CLOCKS AND OSCILLATORS 

The random-frequency deviations of precision clocks 
and oscillators can often be characterized by power-law 
spectra S,(f) - f (I, where f is the Fourier frequency and 
(II typically takes on integer values, i.e., -2, - 1, 0, 1, 2 
[l]-[4]. Fig. 7 shows noise samples corresponding to 
these different power law spectra, and Table I shows the 
nominal range of applicability of these power-law models. 

TIME-DOMAIN SIGNAL CHARACTERIZATION 

Given a discrete set of time deviations Xi taken in se- 
quence for the measurable time difference between a pair 
of clocks or between a clock and some primary reference, 
and given that the nominal spacing between adjacent time 
difference measurements is r. (see Fig. 8 for an example), 

l See Appendix Note # 13 

frequency measurements, each sampled over an interval 
7, and the brackets ( ) indicate an infinite time average 
or expectation value. A pictorial description is shown in 
Fig. 9 for a finite data set. A data set of the order of 100 
points is more than adequate for convergence of a,,( T), 

though of course the confidence of the estimate will typ- 
ically improve as the data length increases [6]. 

Given a discrete set of stored evenly spaced data, the 
value of 7 can be varied in the software [7]. If 7. is the 
minimum data spacing for the original stored data set y?, 
then one can change the sampling time to 7 = m0 by av- 
eraging R adjacent values of y,Trn to obtain a new fractional ak * 
frequency estimate yr, with sample time 7 as input to (7). 
Note this is different from averaging adjacent values of x. 
Hence in a very convenient way one can calculate uY ( 7) 

as a function of 7. which will be shown to be very useful. 
For a finite data set of M values of FT. (7) for general 7 

becomes (see Fig. 8 for an example computation of u!( 7 

l * See Appendix Note # 14 
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x{*l‘xi 
yi * -- T 

Y2 yi 

“ST0 DEV y (‘) 

Fig. 8. Simulated time deviation plot .x(r) with indicated sample time T over which each adjacent fractional frequency J, is 
measured. Equations are for standard deviation and for estimate of u,(r) for finite data set of M frequency measurements. 
Often standard deviation diverges as data length increases when measuring long-term frequency stability of precision oscil- 
lators, whereas u.“(r) converges. 

TIME 

Fig. 9. Pictorial of computation of Allan variance. Simulated time varia- 
tions plotted are random walk. At set sample time 1. Ay = (.r, - 2~: - 
I, )/T is computed. With time of measurement of I, 1 ahead of .x2 and 
that of .I: z ahead of x,. all possible values of Ay are computed. Each 
Ay is squared and average squared value determined. m’; taking 1 /Z 
of this yields two-sample or Allan variance for that value of r. Value of 
7 can then be changed either in hardware or software to determine Allan 
variance for another value of 7. 

= 70). i.e., n = 1) 
1 M-?n+ I 

u;(T) = c ( y:*n 
2(M - 2n + 1) k=I 

- F:)* (8) 

where yi+, and y: are still adjacent fractional frequen- 
cies (i.e., no dead time exists between the measure- 
ments), each averaged over T = ~7~. and 

xk-n - xk 
f . (9)* 

Alternately, one may write (see Fig. 9 for an example) 

ugr> = 
1 

27*(M -2n + 1) 
M-?n+l 

iF, (Ii+% - 2r;+n + X,)? (10) 

l See Appendix Note # 15 

where X, is taken from the set of M + 1 = N discrete time 
deviation measurements between a pair of clocks or os- 
cillators, i = 1 to M + 1: 

Xk+) = 70 ,$, y:” f .t+,. (11) 

Equation (8) is obtained from a first difference on fre- 
quency, and (10) from the second difference on the time; 
they are mathematically identical, yielding the option of 
using frequency or time (phase) data. 

For power-law spectra the following proportionality ap- 
plies: u;(z) - 7’, where p is typically constant for a 
particular value of Q. A simple and elegant relationship 
exists between the spectral density exponent CY (in the re- 
lationship S,(f) - f”) and cc, i.e., p = -CY - 1 (-3 
< OL I l)andp = -2 (01 zz 1) [8]. For example, for 
a significant range of T values. a,(r) - 7”!’ is propor- 
tional to I-( I;‘*) for cesium. rubidium, and passive hy- 
drogen maser frequency standards. Therefore p has the 
value of - 1, and hence Q has the value of 0 (white-noise 
frequency modulation). This is the classical noise exhib- 
ited by an important set of atomic clocks for 7’s beyond 
a few seconds. In this case. u) ( ro) is equal to the standard 
deviation. Fortunately, for most cases with precision 
clocks and oscillators where T 1 1 s, the simple relation- 
ship p = --(Y - 1 is applicable. It is convenient to plot 
log uY( T) versus log T to estimate the value of p and to 
let n = 2', 1 = 0, 1, 2, * * * (7 = n70). 

An ambiguity exists at p = -2; one cannot conve- 
niently tell whether the noise process is flicker-noise phase 
modulation (PM), (Y = + 1, or white-noise PM, CY = +2. 
This ambiguity can be resolved by realizing that for these 
cases a.,.( T) depends on the measurement bandwidth [21, 
[3]. One can construct a variable software bandwidth fS 
by realizing the following [9]. [IO]. In any measurement 
system a hardware bandwidth fh exists through which we 
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TABLE 11’ 

Classical Classical 

Typical Noise Types Standard standard 
a Name 037) = Deviation of I Deviation of y 

2 white-noise PM ~7~7~~ 

1 flicker-noise PM a, 7-’ 

0 white-noise FM a,,~-’ 

u-,r” - I flicker-noise FM 
-2 random-walk FM a-2r 

7 * UJ r)/Js (constant) $(I) &(N + 1)/3N 

- 7 - ur( 7) T -q,(r) 2(Iv + l/3N 

TO - ~~(70) J(M + I)/6 u,( ro) 
undefined u,.(r) JN In N/(2(N - I) In 2) 
undefined u,(7) JN72 

‘Note 7 is a general avenging time and r. is the initial averaging time (7 = nr,, where n is an integer). 
Also note that the last four entries in the fourth column and the last two entries in the fifth column go to 
infinity as M or N go to infinity. M is the initial number of frequency difference measurements and N the 
number of phase or time difference mcasumments N = M + 1. If the spectral density is given by S,(f) 
= h-f”. then 

0-I = 2 log, (Z)h-, 

am2 =; (2&h-,. 

*Note this equality assumes use of modified u:( 7) = z:( 7). 

measure the phase difference or the time difference be- 
tween a pair of oscillators or clocks and we define Th = 
1 / fh. In other words, rh is the sample time period through 
which the time or phase date are observed or averaged. 
Averaging n time or phase readings increases the sample 
time window to nrh = 7,. Let 7$ = 1 /J; thenf, = h/n, 
i.e., the software bandwidth is narrowed to f,. In other 
words, fs = fh/n decreases as we average more Values; 

i.e., increase n (I = nrc). One can therefore construct a 
second difference composed of time deviations so-aver- 
aged and then define a modified af (7) = 5; (7) that will 
remove the ambiguity through bandwidth variation: 

Z;(7) = 
1 

27’n’(N - 3n + 1) 
N-3n+l 

c 
j=l ( 

II&j-l 2 

c (-K,+2” - hi+, + 4) 
i=j ) 

(12) 

where N = M + 1, the number of time-deviation mea- 
surements available from the data set. Now if Z;(T) - 
rp’, then p’ = -a - 1 (1 I QI I 3) [lo], [ll]. Thus 
a,,( 7) is typically employed as a subroutine to remove the 
ambiguity if U?(T) - 7-l. This is because the p’ = --a! 
- 1 relationship is valid as an asymptotic limit for large 
n and Q! c 1 and is not valid in general; however, there 
is evidence that 5;( 7) may be a better measure [ 121. Spe- 
cifically, for Q = 2 and 1, c(‘/Z equals -3/2 and - 1, 
respectively, providing a clean differentiation between 
white-noise PM and flicker-noise PM. 

If three or more independent oscillators or clocks are 
available along with time (phase) or frequency measure- 
* See Appendix Note # 16 

* 

ments between them, then it is possible to estimate a var- 
iance for each oscillator or clock. Often there is a refer- 
ence to which the rest are periodically measured at a 
sampling rate 1 /re. If at each measurement the time or 
frequency differences between the clocks are measured at 
nominally the same time, then the time difference or fre- 
quency difference can usually be estimated or calculated 
between every possible pair in the set of oscillators or 
clocks. Given a series of measurements, variances s$ can 
be calculated on the time or frequency data between all 
pairs. It has been shown [13] that the individual clock 
variances can be estimated using the following equations: 

where 

B = --& .:.s:. 
‘<I (13) 

m is the number of clocks available in the set, and sf = 
0. If the variance measures used are at(r) or is: ( 7). then 
( 13) can be used to estimate the individual variances as a 
function of 7. 

Table II illustrates why one should not use the standard 
deviation to characterize clocks. For the different kinds of 
noise processes we list the standard deviation of the time 
deviations and of the fractional frequency deviations as a 
function of a,( T). The divergent nature of the standard 
deviation is apparent. Even for classical white-noise FM 
the standard deviation of the time diverges as the square 
root of the data length, i.e., the number of samples N [2]. 
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TABLE 111 

Opfimum 
Typical Noise Types Prediction Time Error: 

Q Name .r(rp) rms” Asymptotic Form 

2 white-noise PM rp * u,(r,)/J5 constant 
I Aicker-noise PM - zr * ~~(7,) d/in rp/2 In T,, 6 
0 white-noise FM TP * oJ7p) 

l/2 
‘P 

-I flicker-noise FM Tp * q~p)/~ 
-2 random-walk FM 

Tr 
‘p . $(rp) 3/z 

‘P 

5, is the prediction interval. 

TIME AND FREQUENCY ESTIMATION AND PREDICTION 

Using u,.(l), $(T), S,(f), or S,(f), one can char- 
acterize typical power law processes. Once characterized, 
this opens the opportunity for determining optimum esti- 
mates of values by employing the statistical theorem that 
the optimum estimate of a white-noise process is the sim- 
ple mean. 

For example, consider the very common and very im- 
portant case of white-noise FM typically found on the sig- 
nals from cesium standards, rubidium standards, and pas- 
sive hydrogen masers. The optimum estimate of the 
frequency is the simple mean frequency, which is equiv- 
alent to (xN - x~)/MT~. It is still all too common within 
our discipline to see our colleagues erroneously determin- 
ing the frequency for these kinds of oscillators by calcu- 
lating the slope from a linear least-squares fit to the time 
deviations and quoting the standard deviation around that 
fit as a measure of the clock performance. There are three 
problems in proceeding this way. First, the frequency es- 
timate is not optimum in a mean-square-error sense. It is 
equivalent to throwing away about 20 percent of the data 
and thereby increasing the cost in the case of a calibra- 
tion. Second, the standard deviation diverges as the square 
root of the data length. Third, the standard deviation is 
significantly dependent on the filter form, e.g., linear least 
squares, as well as the clock deviations. On the other 
hand, such a filter is sometimes useful for assessing out- 
liers. The optimum “end-point” method outlined earlier 
has the risk that if either of the points is abnormal, (i.e., 
the model fails), the result will of course be adversely 
effected. Therefore such a filter is useful to assess whether 
there are outliers-paying special attention to the end 
points. Also, if the measurement noise exceeds the com- 
bined noise in the clocks, then the end points will be ad- 
versely affected. The key message is that the end-point 
method for estimating frequency is only optimum if the 
noise is pure white FM, which is easy to determine from 
a log ~~(7) versus log f plot. 

There are other useful, and maybe not so obvious, op- 
timum estimators appropriate for time-difference data sets. 

1) Given white-noise PM, the best time estimate is the 
simple mean of the time deviations; the frequency 
estimate then is the slope from a linear least-squares 
fit to the time deviations, and the frequency drift D 
is determined from a quadratic least-squares fit to 
the time deviations per (1). 

2) Given white-noise FM, the optimum estimate of the 
time is the last value; the optimum-frequency esti- 
mate is outlined in the previous paragraph, and the 
optimum-frequency-drift estimate is derived from a 
linear least-squares fit to the frequency. 

3) Given random-walk FM, the current optimum time 
estimate is the last value plus the last slope (clock 
rate) times the time since the last value; the opti- 
mum-frequency estimate is obtained from the last 
slope of the time deviations; and the optimum-fre- 
quency-drift estimate is calculated from the mean 
second difference of the time deviations. Caution 
needs to be exercised here, for typically there will 
be higher frequency component noise in a real data 
stream, such as white-noise FM, along with ran- 
dom-walk FM, and this can significantly contami- 
nate the drift estimate from a mean second differ- 
ence. If random-walk FM is the predominant long- 
term power-law process, which is often the case, 
then the effect of high-frequency noise can be re- 
duced by calculating the second difference from the 
first, middle, and end-time deviation points of the 
data set. 

The flicker-noise cases are significantly more compli- 
cated, though filters can be designed to approximate op- 
timum estimation [14]-[ 161. As the data length increases 
without limit, time is not defined for flicker-noise PM, 
and frequency is not defined for flicker-noise FM. This 
has some philosophical implications for the definitions of 
time and frequency, unless some low-frequency cutoff 
limits exist. If significant frequency drift exists in the data, 
it should be optimally subtracted from the data or it will 
bias the long-term values of uY( 7): 

qyw = 4. (14) 

Once the power-law spectra are deduced for a pair of 
oscillators or clocks, then one can also develop an opti- 
mum predictor. Table III gives both the optimum predic- 
tion uncertainty values for the various relevant pure 
power-law spectra as well as their asymptotic forms. Spe- 
cial forecasting techniques must be used for optimal pre- 
diction when combinations of these processes are present 
[ 171. To illustrate how these concepts relate to real de- 
vices, Fig. 10 shows a uY( 7) diagram for some interesting 
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Fig. 10. Square mot of Allan variance for variety of state-of-the-art prc- 
cision oscillators including NBS-6. NBS primary frrqucncy standard. 

RMS TIME DEVIATION /’ 

Fig. I I. From frequency stability characterization shown in Fig. 10, op- 
timum prediction algorithms to minimize time error can be obtained. 
Based on optimum prediction procedures rms time prediction error for 
prediction interval rP can be calculated for each oscillator shown in Fig. 
IO and corresponding values am plotted in Fig. Il. 

state-of-the-art oscillators, and Fig. 11 shows the rms time 
prediction errors for the same set of oscillators. 

CONCLUSION 

In conclusion, it is clear that classical statistics do not 
allow characterization of common kinds of random signal 
variations found in precision oscillators. The two-sample 
Allan variance provides a valuable and convergent mea- 
sure of the power-law spectral-density models useful in 
characterizing random deviations for most oscillators and 
clocks. Once characterized, we can calculate optimum 
time and frequency estimates as well as predicted values. 
Characterizing the random variations also provides near- 
optimum estimation of systematic effects, which often 
cause the predominant time and frequency deviations. For 
example, if we wanted to optimally determine the static 
temperature dependence with the temperature set at two 
different values, we would stabilize the oscillator at one 
temperature and measure the frequency against a refer- 
ence for a time I,, corresponding to the r for the nominal 

minimum ur( T) value. We would then change the tem- 
perature to the other value and repeat the measurement 
with the same criteria and note the A!‘” between the two 
optimally determined frequency values. If these two steps 
are repeated several times, an arbitrarily good precision 
for the temperature coefficient is achieved if it is linear. 
The uncertainty is approximately given by u,,( r,,,)/ fi, 
where P is the number of AT values obtained from 
switching back and forth. Knowing the characteristics of 
both the random and the systematic deviations of preci- 
sion clocks and oscillators clearly is useful to the de- 
signer, the manufacturer, the planner, and the user as well 
as the vendor of these devices. 

The aforementioned procedures usually work well if the 
clocks or oscillators are in a reasonable environment. If 
the environment is adverse, other procedures and analysis 
methods may have to be employed. As a general rule it is 
often useful to analyze the data in the frequency domain 
as well as the time domain. The frequency domain is es- 
pecially useful if there are bright lines, i.e., sidebands to 
the carrier frequency. The effect of a modulation sideband 
fm on ur (7) can be calculated, and is given by [ 181 

where xPP is equal to the peak-to-peak or twice the ampli- 
tude of the time-deviation modulation. 

If one is trying to estimate the power-law spectral be- 
havior between a pair of oscillators or clocks using u,,(r), 
it is apparent from (15~ that if significant modulation 
sidebands are present on the signal, these can seriously 
contaminate that estimate. However, if a u,,(r) plot dis- 
plays a character as given by (15), then the amplitude and 
frequency of that modulation sideband can be estimated 
from this time-domain analysis technique. In practice, this 
approach is often used, but these modulation sidebands 
can be more efficiently estimated in the frequency do- 
main. If the measurement sampling rate 1 /rc is set equal 
to fm, then the modulation sideband is aliased away and 
has no effect on uY( 7). 

The best rule in all analysis is to use common sense. 
Very often the most revealing information may be in a 
plot of the raw time (phase) difference or frequency-dif- 
ference residuals after some trend has been removed. Such 
a plot is usually the first thing to look at when character- 
izing clocks and oscillators. Caution here’is also impor- 
tant as a pure random walk on the time residuals (white 
FM) may be visually interpreted as having frequency 
steps. This is especially true for flicker FM as often seen 
in quartz-crystal oscillators. Following the time-residual 
plot with a uY( T) analysis often answers the question as 
to whether or not such steps are statistically significant. 
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This paper describes recent progress in extending 
high accuracy measurements of phase noise in 
oscillators and other devices for carrier frequencies 
from the rf to the millimeter region and Fourier 
frequencies up to 10% of the carrier (or a maximum of 
about 1 GHz). A brief survey of traditional 
precision techniques for measuring phase noise is 
included as a basis for comparing their relative 
performance and limitations. The single oscillator 
techniques, although concept&lly simple, require a 
set of 5 to 10 references to adequately measure the 
phase noise from 1 Hz to 1 GHz from the carrier. The 
two oscillator technique yields excellent noise 
floors if, for oscillator measurements, one has a 
comparable or better oscillator for the reference 
and, for other devices, either pairs of devices or a 
reference oscillator vith comparable or better noise. 
We have developed several new calibration techniques 
vhich, when combined with previous two oscillator 
techniques, permits one to calibrate all factors 
affecting the measurements of phase noise of 
oscillator pairs to an accuracy which typically 
exceeds 1 dB and in favorable cases can approach 0.4 
dB. In order to illustrate this expanded two 
oscillator approach, measurements at 5 MHz and 10 GHz 
are described in detail. At 5 MHz we achieved 
accuracies of about 20.6 dB for phase noise 
measurements from 20 Hz to 100 kHz from the carrier. 
At 10 GHz we achieved an accuracy of f0.6 dB for 
phase noise measurements a few kHz from the carrier 
degrading to about 21.5 dB. 1 GHz from the carrier. 

I. Introduction 

This paper describes recent progress at the National 
Bureau of Standards (NBS) in extending high accuracy 
measurements of phase noise in oscillators, 
amplifiers, frequency synthesizers, and passive 
components at carrier frequencies from the rf to the 
millimeter region and Fourier frequencies up to 10% 
of the carrier (or a maximum of about 1 GHz). An 
examination of existing techniques for precision 
phase noise measurements of oscillators[l-111 shoved 
that present approaches which don't require a second 
"reference" oscillator have good resolution or noise 
floor for Fourier frequencies extending over only 1 
or 2 decades.[7-101 Consequently, these approaches 
require a set of 5 to 10 references, either delay 
lines or high Q factor cavities, in order to 
adequately measure the phase noise from 1 Hz to 1 GHz 
from the carrier. Using the cavity approach would 
require a entire set of reference cavities for each 
carrier frequency measured. Similar considerations 
also apply to phase noise measurements of the other 
devices unless one can measure pairs of devices. 

The limitations of the single oscillator techniques 
led us to adopt a two oscillator method for all 
measurements. This approach yields good resolution 
or noise floor from essentially dc to the bandvidth 
of the mixer if, for oscillator measurements, one has 
a comparable or better oscillator for the reference 
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and, for other devices, either pairs of devices or a 
reference oscillator with comparable or better noise. 

The major limitations in the accuracy of the two 
oscillator method (which also apply to the single 
oscillator methods) are the calibration of: the mixer 
phase-to-voltage conversion factor, the amplifier 
gain versus Fourier frequency, and the accuracy of 
the spectrum analyzer. We have developed several new 
calibration techniques which, when combined with 
previous techniques, allow us to address each of 
these limitations. The net result is the development 
of a complete measurement concept that permits one to 
calibrate all factors affecting the measurements of 
phase noise of oscillator pairs to an accuracy which 
typically exceeds 1 dB and in favorable cases can 
approach 0.4 dB. For other types of devices the 
limitations are similar if the noise of the reference 
oscillator can be neglected. The ultimate accuracy 
that can be easily achieved with this approach is now 
limited by the accuracy of the attenuators in 
available spectrum analyzers. 

Measurements at 5 MHz and 10 GHz are described in 
detail, in order to illustrate this expanded two 
oscillator approach. Specifically we measure the 
mixer phase-to-voltage conversion factor multiplied 
by amplifier gain on all channels versus Fourier 
frequency using a new ultra-wideband phase modulator. 
We then measure the absolute mixer conversion factor 
multiplied by the amplifier gain at one Fourier 
frequency, the effect of the phase-lock loop on the 
measured noise voltage, and spectral density function 
of the spectrum analyzers. These measurements are 
used to normalize the relative gains of the noise 
measurements on the various channels. At 5 MHz we 
achieved accuracies of about kO.6 dB for phase noise 
measurements from 20 Hz to 100 kHz from the carrier. 

At 10 GHz we achieved an accuracy of 20.6 dB for 
phase noise measurements a few kHz to 500 MHz from 
the carrier. The accuracy degrades to about +1.5 dB, 
1 GHz from the carrier. 

II. 

The output of an oscillator can be expressed as 

V(t) = [V, + c(t)] sin(2xv,t + d(t)), (1) 

where V, is the nominal peak output voltage, and y0 
is the nominal frequency of the oscillator. The time 
variations of amplitude have been incorporated into 
c(t) and the time variations of the instantaneous 
frequency, v(t). have been incorporated into 6(t). 
The instantaneous frequency is 

d[#(t) I 
v(t) = Y. +-. (2) 

2sdt 

The fractional frequency deviation is defined as 

v(t) - v. d[b(t) I 
y(t) = =-, (3) 

"0 Zsv,dt 

TN-129 
432 



Power spectral analysis of the output signal V(t) 
combines the power in the carrier y0 with the power 
in t(t) and d(t) and therefore is not a good method 
to characterize r(t) or d(t). 

Since in many precision sources understanding the 
variations in O(t) or y(t) is of primary importance, 
we will confine the following discussion to 
frequency-domain measures of y(t), neglecting c(t) 
except in cases where it sets limits on the 
measurement of y(t). The amplitude fluctuations, 
c(t), can be reduced using limiters whereas h(t) can 
be reduced in some cases by the use of narrow band 
filters. 

Spectral (Fourier) analysis of y(t) is often 
expressed in terms of S,(f), the spectral density of 
phase fluctuations in units of radians squared per Hz 
bandwidth at Fourier frequency f from the carrier Ye. 
Alternately S,(f), the spectral density of fractional 
frequency fluctuations in a 1 Hz bandwidth at 
Fourier frequency f from the carrier Y., can be used 
ill. These are related as 

2 

S,(f) = k S,(f) rad'/Hz O<f<Q= . (4) 
f* 

S,(f) can be intuitively understood as, 

u* (0 
S,(f) = - (5) 

BW 

where Ad(f) is the rms phase deviation measured at 
Fourier frequency f from the carrier in a bandwidth 
BW. It should be noted that these are single-sided 
spectral density measures containing the phase or 
frequency fluctuations from both sides of the 
carrier. The mean squared phase modulation in a 
measurement bandwidth, BW, is given by 

+BW/2 

Ad*(f) = 
I 

S,(f) df . (6) 

-BW/2 

Other measures sometimes encountered are Y(f), 
dBC/Hz, and S,,(f). These are related by [l-3] 

S,,(f) = vzS,(f) Hz*/Hz 

S,(f) = Y(v,-f) + Y(v,+f) w  2Y(f) (7) 

dBC/Hz = 10 log Y(f) 

Y(f) and dBC/Hz are single sideband measures of phase 
noise. These are the revised definitions of Y(f) and 
dBC as per the most recent recommendation of the 
Standards Coordinating Committee for Time and 
Frequency of the IEEE [3]. With these revised 
definitions Y(f) and dBC/Hz are now defined for 
arbitrarily large phase modulation, whereas 
previously they were restricted to small angle 
modulation. In some situations, especially where f 
becomes a sizeable fraction of ~c, the phase noise 
spectrum is asymmetric about the carrier. In these 
cases one should specify whether the upper sideband 
noise Y(v,+f) or the lower sideband noise Y(vc-f) is 
being referenced. These distinctions are becoming 

8 See Appendix Note # 6 

increasingly important as users require the 
specification of phase noise near the carrier where 
the phase excursions are large compared to 1 radian, 
or at Fourier frequencies which exceed the bandwidth 
of typical circuit elements. 

The above measures provide the most powerful (and 
detailed) analysis for evaluating types and levels of 
fundamental noise and spectral density structure in 
precision oscillators and signal handling equipment 
as it allows one to examine individual Fourier 
components of residual phase (or frequency) 
modulation. 

LLI. A. lb Oscillator MethoP * 

Fig. 1 shows the block diagram for a typical scheme 
used to measure the phase noise of a precision source 
using a double balanced mixer and a reference source. 
Fig. 2 illustrates a similar technique for measuring 
only the phase noise added in multipliers, dividers, 
amplifiers, and passive components. It is very 
important that the substitution oscillator be at the 
same drive level, impedance, and at the equivalent 
electrical length from the mixer as the signal coming 
from the reference oscillator. This is dramatically 
illustrated in Fig. 3, discussed below. The output 
voltage of the mixer as a function of phase 
deviation, Ad. between the two inputs to the mixer is 
nominally given by 

V O"t. = K cos A6 (8) 

Near quadrature (90' phase difference) this can be 
approximated by 

2n-1 
V O"t = K,,66, where 60 t [Ad - - r] <O.l (9) 

2 

where n is the integer to make 6d - 0. The voltage to 
phase conversion ratio sensitivity, K,, is dependent 
on the frequency, the drive level, and impedance of 
both input signals, and the IF termination of the 
mixer (41. The combined spectral density of phase 
noise of both input signals, the noise of the mixer, 
and the amplitude noise from the IF amplifiers is 

Measurement olS+f) Between Two Oscillators 

m&&IX 

Fig. 1. Precision phase measurement system using a 
spectrum analyzer. Calibration requires a recording 
device to measure the slope at the zero crossing. 
The accuracy is better than 0.4 dB from dc to 0.1 y0 
Fourier frequency offset from the carrier Ye. 
Carrier frequencies from a few Hz to 10" Hz can be 
accommodated with this type of measurement system 
141. 
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given by 

S,(f) = 

I 

2 V.(f) 1 
-9 (10) 

C(f)& BW 

Measurement of Sq( 1) for Two Amplifbs 

slop K,G(l) vdWm&m 

Fig. 2. Precision phase measurement system featuring 
self calibration to 0.4 dB accuracy from dc to 0.1 y0 
Fourier frequency offset from carrier. This system 
is suitable for measuring signal handling equipment, 
multipliers, dividers, frequency synthesizers, as 
well as passive components 141. 

FREQUENCY (kliz) 

Fig. 3. Double-balanced mixer phase sensitivity at 5 
KHz as a function of Fourier frequency for various 
output terminations. The curves on the left were 
obtained with 10 mW drive while those on the right 
were obtained with 2 mW drive. The data demonstrate 
a clear choice betveen constant, but lov sensitivity 
or much higher, but frequency dependent sensitivity 
[&I f 

vhere V,(f) is the EMS noise voltage at Fourier 
frequency f from the carrier measured after IF gain 
G(f) in a noise bandvidth BW. Obviously BU must be 
small compared to f. This is very important where 
S,(f) is changing rapidly with f. e.g., 
varies as f-" 

S,(f) often 
near the carrier. In Fig. 1, the 

output of the second amplifier following the mixer 
contains contributions from the phase noise of the 
oscillators, the noise of the mixers, and the post 
amplifiers for Fourier frequencies much larger than 
the phase-lock loop bandwidth. In Fig. 2, the phase 
noise of the oscillator cancels out to a high degree 

(often more than 20 dB). Termination of the mixer IF 
port vith 50 0 maximizes the IF bandwidth, however, 
termination vith reactive loads can reduce the mixer 
noise by - 6 dB, and increase & by 3 to 6 dE as 
shown in Fig. 3 [4]. Accurate determination of Ke 
can be achieved by measuring the slope of the zero 
crossing in volts/radian vith an oscilloscope or 
other recording device vhen the two oscillators are 
beating slowly. For some applications the digitizer 
in the spectrum analyzer can be used to measure both 
the beat period and the slope in V/s at the zero 
crossing. The time axis is easily calibrated since 
one beat period equals 2s radians. The slope in 
volts/radian is then calculated with a typical 
accuracy of 0.2 dB. Estimates of K, obtained from 
measurements of the peak to peak output voltage 
induced can introduce errors as large as 6 dB in 
S,(f) even if the amplitude of the other harmonics is 
measured unless the phase relationship is also taken 
into account [4]. S,(f) can be made independent of 
the accuracy of the spectrum analyzer voltage 
reference by comparing the level of an externally IF 
signal (a pure tone is best), on the spectrum 
analyzer used to measure V, with the level recorded 
on the device used to measure K,. 

The noise bandwidth of the spectrum analyzer also 
needs to be verified. This calibration procedure is 
sufficient for small Fourier frequencies but looses 
precision and accuracy due to the problems 
illustrated in Fig. 3 and the variations of amplifier 
gain with Fourier frequency. If measurements need to 
be made at Fourier frequencies near or below the 
phase-lock-loop bandwidth, a probe signal can be 
injected inside the phase-lock-loop and the 
attenuation measured versus Fourier frequency. 

Some care is necessary to assure that the spectrum 
analyzer is not saturated by spurious signals such as 
the power line frequency and its multiples. 
Sometimes aliasing in the spectrum analyzer is a 
problem. If narrow spectral features are to be 
measured it is usually recommended that a flat top 
vindow function (in the spectrum analyzer) be used. 
In the region where the measured noise is changing 
rapidly with Fourier frequency, the noise bandwidth 
should be much smaller than the measurement 
frequency. The approximate level of the noise floor 
of the measurement system should be measured in order 
to verify that it does not significantly bias the 
measurements or, if necessary, to subtract its effect 
from the results. 

Typical best performance for various measurement 
techniques is shown in Fig. 4. The two oscillator 
approach exceeds the performance of almost all 
available oscillators from below 0.1 KHz to over 100 
GHz and is generally the technique of first choice 
because of its versatility and simplicity. Figs. 10 
- 12 give some examples. Phase noise measurements on 
pairs of signal sources can be made with an absolute 
accuracy better than 1 dB using the above calibration 
procedure. Such accuracy is not always attainable 
when the phase noise of the source exceeds that of 
the added noise of the components under test (see 
Fig. 2). The use of specialized high level mixers 
with multiple diodes per leg increases the phase to 
voltage conversion sensitivity, K, and therefore 
reduces the contribution of IF amplifier noise (51 as 
shown in Fig. 4. Phase noise measurements can 
generally be made at Fourier frequencies from 
approximately dc to l/2 the source frequency. The 
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major difficulty is designing a mixer terminations to 
remove the source frequency from the output signal, 
which would generally saturate the low noise 
amplifiers following the mixer, without degrading the 
signal-to-noise ratio. As mentioned earlier the 
phase noise spectrum is quite likely asymmetric when 
f exceeds the bandwidth of the tuned circuits in the 
device under test. For example one expects that the 
phase noise at 1/2v,, is different than the phase 
noise at 3/2v,. 

Comparison of Noise Floor 
for Different Techniques 

Fig. 4. 
Curve A. 

Curve B. 

Curve C. 

Curve D. 

Curve E. 

Curve F. 

Fourier Frequency (Hz) 

The noise floor S,(f) (resolution) of 
typical double balanced mixer systems (e.g. 
Fig. 1 and Fig. 2) at carrier frequencies 
from 0.1 MHz to 26 CHz. Similar 
performance possible to 100 GHz [5]. 
The noise floor, S,(f), for a high level 
mixer [5]. 
The correlated component of S,(f) between 
two channels using high level mixers [5]. 
The equivalent noise floor S,(f) of a 5 to 
25 Hllz frequency multiplier. 
Approximate phase noise floor of Fig. 8 
using a 500 ns delay line. 
Approximate phase noise floor of Fig. 8 
where a 1 ms delay has been achieved by 
encoding the signal on an optical carrier 
and transmitted it across a long optical 
fiber to a detector. 

Host double balanced mixers have a substantial non- 
linearity that can be exploited to make phase 
comparison between the reference source and odd 
multiples of the reference frequency. Some mixers 
even feature internal even harmonic generation. The 
measurement block diagram looks identical to that of 
in Fig. 1, except that the source under test is at an 
odd (even) harmonic of the reference source. This 

method is relatively efficient (as long as the 
harmonics fall within the bandwidth of the mixer) for 
multiples up to x5 although multiples as high as 25 
have been used. The noise floor is approximately 
degraded by the amount of reduction in the phase 
sensitivity of the mixer. The phase noise of the 

reference source is also higher at the multiplied 
frequency as shown in Section I1I.F below. 

J.JI. B. Enhanced Performance Usine Correlation 

The resolution of the many systems can be greatly 
enhanced (typically 20 dB) by using correlation 
techniques to separate the phase noise due to the 
device under test from the noise in the mixer and IF 
amplifier [5, 11). 

For purposes of illustration, consider the scheme 
shown in Fig. 5. At the output of each double 
balanced mixer there is a signal which is 
proportional to the phase difference, Ad, betveen the 
two oscillators and a noise term, Vs, due to 
contributions from the mixer and amplifier. The 
voltages at the input of each bandpass filter are 

V,(BP filter input) = G, Ad(t) + C,V,,(t) (11) 

V,(BP filter input) = G, Ad(t) + C,V,,(t). 

where Vsl(t) and V,,(t) are substantially 
uncorrelated and C, and C, are constants. Each 
bandpass filter produces a narrow band noise function 
around its center frequency f: 

V,(BP filter output) = G1(SI(f)IC B,' cos (2nft + 
4(t) I 

+ C,[S,,,(f)lh Bi4 cos [2rft + n,(t)] (12) 

V,(BP filter output) = G,[S,(f)]' Br4 cos [2rft + 
$J(t) 1 

+ C,[S,,,(f)14 Bs4 cos [2nft + n,(t)] 

Fig. 5. Correlation phase noise measurement system. 

where 8, and 8, are the equivalent noise bandwidths 
of filters 1 and 2 respectively. Both channels are 
bandpass filtered in order to help eliminate aliasing 
and dynamic range problems. The phases #b(t), n,(t) 
and n,(t) take on all values between 0 and 2s with 
equal likelihood. They vary slowly compared to l/f 
and are substantially uncorrelated. When these two 
voltages are multiplied together and low pass 
filtered, only one term has finite average value. 
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The output voltage Is 

%t = 4 G,G,S,(f) B, bB,* + D,<cos[$(t)-nr(t)]> (13) 

+ D,<cos($(t) - n,(t)]> + D,<cos[n,(t)-n,(t)]>, 

so that S,(f) is given by 

(2)": (f) 
S,(f) = 

G,G,JB,B, ' 
(14) 

For times long compared to B,-'Bamr the noise terms 
D D, and D, tend towards zero as Jt. Limits in the 
r&ction of these terms are usually associated with 
harmonics of 60 Hz pickup, dc offset drifts, and non- 
linearities in the multiplier. Also if the isolation 
amplifiers have input current noise, they will pump 
current through the source resistance. The resulting 
noise voltage will appear coherently on both channels 
and cannot be distinguished from real phase noise 
between the two oscillators. One half of the noise 
power appears in amplitude and one half in phase 
modulation. 

Obviously the simple single frequency correlator used 
in this example can be replaced by a fast digital 
system which simultaneously computes the correlated 
phase noise for a large band of Fourier frequencies. 
Typical results show a reduction in noise floor of 
order 20 dB over the noise floor of a single channel 
(See Fig. 4). The great power of this technique is 
that it can be applied at any carrier frequency where 
are available double balanced mixers. The primary 
limitations come from the bandwidth and non- 
linearities in the cross correlator (5,ll). 

III. C, Reference Phase Modulation Method 

Another method of determining S,(f) uses phase 
modulation of the reference oscillator by a known 
amount. The ratio of the reference phase modulation 
to the rest of the spectrum then can be used for a 
relative calibration. This approach can save an 
enormous amount of time for measurements which are 
repeated a great many times. An adaptation of this 
approach is utilized in the new NBS phase noise 
system described in section IV below. 

LII. D. Freauencv DisUnator Mahsxis 

It is sometimes convenient to use a high-Q resonance 
directly as a frequency discriminator as shown in 
Fig. 6. The oscillator can be tuned l/2 linewidth 
(v,/2Q) away from line center yielding a detected 
amplitude signal of the form 

V O"t. = G(f)k,Qdy(f) [" +c(t)l (15) 

This approach mixes frequency fluctuations between 
the oscillator and reference resonance with the 
amplitude noise of the transmitted signal. By using 
amplitude control (e.g. by processing to normalize 
the data), one can reduce the effect of amplitude 
noise. 15) The measured noise at the detector is 
then related to the phase fluctuation of the 
reference resonance by 

S‘(f) = (16) 

vco FREQUENCY 

Fig. 6. High-Q resonance used as a frequency 
discriminator. Note that the peak response is 
displaced from the center of the resonance by about 
the half bandwidth. 

This approach normally has the limitations that f 
must be small compared to the linewidth of the 
cavity, and the effect of residual amplitude noise is 
difficult to remove; however, no reference source is 
needed. The calibration factors G(f)KdQ can be 
measured even for Fourier frequencies larger than 
v,/2Q by stepping the source frequency an amount dy 
(which is small compared to l/24) and measuring the 
output voltage versus the modulation frequency, f. 

Differential techniques can be used to measure the 
inherent frequency (phase) fluctuations of two high-Q 
resonators as shown in Fig. 7 [7]. The output 
voltage is of the form V,vt = 2QKdG(f) dy(f). The 
phase noise spectrum of the resonators is then 
obtained using Eq. 4. JJo”w (0 S,(f) = I 1 

2 1 yo - f< - (17) 
PQfK,G(f) BW 24 

Measurement of the Inherent Phase Noise in High-O Resonators 

REF 

- I.----------------------------------~- 

Fig. 7. Differential frequency discriminator using a 
pair of high-Q resonators. In this approach the 
phase noise of the source tends to cancel out. 
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The phase noise in the source can cancel out by 20 to 
40 dB depending on the similarity of resonant 
frequencies Q's and the transmission properties of 
the two resonators. This approach was first used to 
demonstrate that the inherent frequency stability of 
precision quartz resonators exceeds the performance 
of most quartz crystal controlled oscillators [7]. 

If only one resonance is used, the output includes 
the phase fluctuations of both the source and the 
resonator. The calibration is accomplished by 
stepping the frequency of the source and measuring 
the output voltage, i.e., AV = G(f)K'(f) A,vi. From 
this measurement the phase spectrum can be calculated 
as 

V,(f) 2 1 
S,(f) = 

[ HI 

- (18) 
f K'(f) BW ' 

Fig. 8A shows one method of implementing this 
approach at X-band. The cavity has a loaded quality 
factor of order 25,000. Fig. gB shovs the measured 
frequency discriminator curve. Note that K'(f) is 
constant for fa/(2Q) and decreases at values of f 
larger than the half bandwidth of the resonance as 

1 
K1(f) - (19) 

2Qf 2 
1+ C-1 

y.3 

The frequency dependence shown in eq. (19) can be 
accurately determined by measuring IV when stepping 
the source an amount Av, which is small compared to 
vc/Q. versus the modulation frequency, f. This 

approach has poor resolution near the carrier and 
limited high frequency response. Therefore the 
measurement of phase from close to the carrier out to 
109 of the carrier could require a large set of 
cavities with different Q factors. In order to 
achieve the required Q factor for close in 
measurements it may even be necessary to use 
cryogenic techniques. 

LII. E. Delav_LLne net&i! 

Another different approach uses a delay line to make 
a pseudo reference which is retarded relative to the 
incoming signal [7-lo] as shown in Fig. 9. 

The mixer output is of the form 

V O"t = 2stdKduody , (20) 

and the input phase noise is given by 

V,(f) 

S,(f) = I 1 
2 

1 1 
-. f< - (21) 

2rfrdG(f)Kd BW ‘d 

This approach is often used at microwave frequencies 
when only one oscillator is available. In this 
technique the ability to resolve phase noise close to 
the carrier depends on the delay time. For example, 
if f = 1 Hz and rd = 500 ns, then, (2sffd)2 - lo-". 
The noise floor is 110 dB higher at f = 1 Hz than 
that of the two oscillator method, decreasing as 
l/f*. Recent advances make it possible to encode the 

rf signal on an optical signal which then can be 
transmitted down an optical fiber to achieve delays 
up to the order of lob3 s vith an increase in the 
noise floor to approximately -140 dB relative to 1 
rad2/Hz. The noise floor can be reduced by -20 to 40 
dR using the correlation techniques described above 
(111. Note that the range of Fourier frequencies is 

usually limited to less than - l/r,. This technique 
normally has good resolution over lb to 2 decodes in 
Fourier frequency. Therefore, measurements of phase 
noise from close to the carrier out to 108 of the 
carrier require a large set of different delay lines 
and hardware including optical delay lines, 
associated lasers, modulators, and detectors. 

Measurement of Phase Noise using a High-Q Cavity 

&V I C(f)K’W kr, 

10.6 GHr OSC cm, 

1 
K’(f) - z- 

1 l w, 
“a 1 output 

1 
-506 kHz 10.6 GHr +600 KHz 

Frequency 

Fig. a. A. block diagram of a high Q resonator used 
as a frequency discriminator. B. Frequency 
discriminator cume for the scheme shovn in A used at 
X-band with a cavity having a loaded quality factor 
of approximately 25.000. 

Measurement of S$ (f) Using a Delay Line 

2 

V, - PndKdv,,dy 

I 
cabrste Kd 

Skqm KdG(l) votklra&a~ 

Fig. 9. Delay line frequency discriminator. 
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Phase Noise of Quartz Oscillators 

f -iipy--q 

“ .  

-160' I I 
0 1 2 3 4 5 

Log Fourier Frequency (Hz) 

Fig. 10. Phase noise performance of selected quartz 
oscillators. The LN 5 MHz oscillator is driven at a 
high level to reduce the wideband noise while the LD 
5 KHz oscillator is driven at a lower level to obtain 
low phase noise close to the carrier. 

Phase Noise at X Band 
of Multiplied Quartz Oscillators 

oLN 5Mi-k - 
.LN lOOMliz 
x LD 5MHz 

C .- 
e -120 - 
=6- 
cn -130 - 

-140 * I I I I 

0 1 2 3 4 

Log Fourier Frequency (Hz) 

Fig. 11. Phase noise of the oscillators of Fig. 10 
if multiplied to X-band in a perfect frequency 
multiplier. 

111. F. Multiolication/Divisio@ 

The use of perfect frequency multipliers (or 
dividers) between the signal source and the double 
balanced mixer increases (decreases) the phase noise 
level [12] as 

(22) 

where “I is the initial carrier frequency and ~z is 
the final carrier frequency. This can be used to 

either increase or decrease the phase sensitivity of 
the mixer system. Fig. 4 shows the noise of a 

Added Phase Noise by Amplifiers 
N -100, I I I I I 

9 -130 

T -140 

ci -150 
C .a 
c -160 
x 
co -170 

- 0 1 2 3 4 5 6 

Log Fourier Frequency (Hz) 

Fig. 12. Curves A and B show the phase noise added 
by selected GaAs MESFET amplifiers. Curve C shows 
the phase noise added by a typical common emitter 
silicon bipolar transistor with a “good” rf bypass on 
the emitter lead. Curve D shows the typical 
performance of the same amplifier with a small 
unbypassed impedance (approximately 
l/transconductance) in the emitter lead. The added 
phase noise is generally independent of frequency 
over a very large range. 

specialized 5 to 25 MHz multiplier referred to the 5 
KHz input. A potential problem with the use of the 
multiplier approach comes from exceeding the linear 
range of the mixer. Once the phase excursion, Ad, 
exceeds about 0.1 radian, non-linearities start to 
become important and at Ad - 1 radian, the 
measurement is no longer valid [12]. An additional 
practical problem is that low noise multipliers are 
usually narrowband devices. Each significantly new 
frequency generally requires a new set of frequency 
multipliers. 

IV. A. The New NBS Phase Noise Measurement Svstems 

The new NBS phase noise measurement systems are a 
combination of the traditional two oscillator 
approach shown in Figs. 1 and 2 plus the reference 
phase modulation technique mentioned in section IIIC. 
The complete block diagram is sketched in Fig. 13. 
This approach yields the widest possible bandwidth 
and the lowest phase noise of a single channel 
system. It does, however, require the use of two 
sources for oscillator measurements. From hardware 
considerations we generally use 3 different phase 
noise measurement systems. Test set A accepts 
carrier frequencies from 5 to 1300 MHz and can 
measure the phase noise from 1 Hz to about 10% of the 
carrier or a maximum of 100 MHz. Test set B accepts 
carrier frequencies from 1 GHz to 26 GHz and can 
measure the phase noise from 0.01 Hz to about 500 MHZ 

from the carrier. Test set C accepts carrier 
frequencies from about 2 to 26 GHz and can measure 
the phase noise from 0.01 Hz to 1 GHz from the 
carrier. Test set D accepts carrier frequencies from 
33 to 50 GHz in WR22 waveguide and can measure the 
phase noise from 0.01 Hz to about 1.3 GHz from the 
carrier. 

The construction of the phase modulator between the 
reference source and the mixer will be described in 
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detail elsewhere [12]. The low pass filter section 
is used in order not to saturate the amplifiers with 
the carrier feedthrough signal from the mixer. One 
dc amplifier is used for phase noise measurements 
from dc to 100 kHz from the carrier. One ac 
amplifier is used for phase noise measurements from 
50 kHz to 32 UHZ. This range is well matched for one 
of our spectrum analyzers. The wideband ac amplifier 
has a bandwidth of 50 kHz to 1.3 GHz and is used when 
the desired measurement bandwidth exceeds 32 MHz. 
The wide bandwidth spectrum analyzer also provides a 
convenient way to observe the gross features of the 
output phase noise and to identify any major spurious 
outputs if present. In order to obtain the most 
accurate measurement of the phase noise it is, 
however, necessary to measure the amplitude of the 
first IF signal at about 21 MHz in order to avoid the 
variations in gains of the log amplifiers with 
various environmental factors. 

Fig. 13. Generalized block diagram of the new NBS 
phase noise measurement systems. The phase noise of 
carrier frequencies from 1 KHz to 100 GHz can be 
measured by varying the components in the phase 
shifters and mixers. Dedicated measurement systems 
covering 5 KHz to 50 GHz are described in the text. 

IV. 8. Ueuurement Seauence 

1) The output power of the two sources to be 
measured is typically set to between +5 and + 13 dBm 
at the mixer. This takes into account the insertion 
loss of the phase modulator. If the oscillators 
don’t posses sufficient internal isolation to prevent 
unwanted frequency pulling, isolators (or isolation 
amplifiers) are generally inserted between the 
sources and the mixer. 

2) The absolute sensitivity of the mixer and the dc 
amplifier for converting small changes in phase to 
voltage changes is determined in a way similar to the 
traditional method, namely by allowing the two 
oscillators to slowly beat. The output of the dc 
amplifier is recorded by the digitizer in the FFT 
connected to the dc amplifier in order to accurately 
determine the period of the beat. In test sets C and 
D an additional 50 MHz digitizer is used to average 
and record the beat frequency. The time scale of the 
digitizer is then expanded to approximately 10% of 

the beat period and pretrigerred at about -2V in 
order to accurately determine the slope of the output 
in volts per radian. This calculation, shown in eq. 
(23) below, is typically accurate f 2% or 0.2 dB. 

K = Volts/Second)(Period/(2r) (23) 

3) The two sources to be measured are phase locked 
together with sufficient bandwidth that the phase 
excursions at the mixer are less than 0.1 radian. 
The necessary phase lock gain is calculated using an 
estimate for the noise of the oscillators and the 
tuning rate for the reference oscillator. This is 
then verified by noting the peak to peak excursions 
of the dc amplifier and using the measured conversion 
sensitivity measured in step 2 above. If the peak 
phase excursions are in excess of 0.1 radian, then 
the phase lock loop bandwidth is increased (if 
possible) in order to satisfy this condition. 

4) The modulator is driven by a reference frequency 
(typically at +7 to +lO dBm) which steps through the 
Fourier frequencies of interest and the detected KMS 
voltage recorded on the appropriate spectrum 
analyzer. This approach accurately yields the 
relative gains of each amplifier and its respective 
spectrum analyzer since it automatically accounts for 
the effect of the phase lock loop and residual 
frequency pulling as well as the termination of the 
mixer and the variations in gain of the various 
amplifiers with Fourier frequency. The amplitude of 
the phase modulation on the carrier is constant in 
amplitude to better than f 1.5 dB (typically +0.2dB 
for f C 500 KHz) for reference frequencies dc to 
about 108 of the carrier frequency or a maximum of 1 
GHz . Initial measurements of the prototype 
modulator are shown in Fig. 14. 

This measurement is then combined with the 
measurement of the absolute mixer sensitivity 
multiplied by the gain of the dc amplifier described 
in step 2 above. The absolute gain of all the 
amplifiers shown in Fig. 13 can generally be 
determined to an accuracy of f 0.3 dB (1.5 dB for 
Fourier frequencies from 500 KHz to 1 GHz) over the 
Fourier frequencies of interest. 

5) Next the spectral density function of the FFT is 
verified. The level of the noise determined by the 
FlT for the input of the noise source amplifier 
sequentially shorted to ground, connected to ground 
through a 100 kC metal film resister, and connected 
to ground through 200 pF, is then recorded. From 
these data one can determine the inherent noise 
voltage and noise current of the noise source 
amplifier plus the FFI as well as the noise of the 
resistor to about + 0.25 dB which is the stated 
accuracy of the FFI. This primary calibration of the 
FFI can be carried out from about 20 Hz to over 50 
kHZ. Above 50 kHz, the noise gain of the amplifier 
we used contributes a significant amount of noise. 
With some compensation the noise is flat to within 
+0.2 dB from 20 Hz to 100 kHz. Next the noise source 
is switched into the output of the mixer and the 
relative noise spectrum of all the spectrum analyzers 
is calibrated by knowing their relative gains. This 

procedure verifies the voltage references and noise 
bandwidths of the various spectrum analyzers. 

6) The noise voltage is recorded on the three 
spectrum analyzers over the Fourier frequencies of 
interest, generally the same one used in step 4 
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above. The measured noise voltages are scaled using 
the measured gains and the spectral density of phase 
noise calculated. The overlapping ranges of the 
various spectrum analyzers allows one the opportunity 
to compare the measurements on the three spectrum 
analyzers. Typically one can obtain S,(f) of the 
oscillator pair to an accuracy of about f 0.6 dB at 
Fourier frequency above 100 Hz. The agreement with 
repeat measurements is often of order + 0.2 dB as 
shown in Fig. 15. 

7) The noise floor of the system is determined by 
driving both sides of the measurement system with one 
oscillator having a similar power and impedance level 
as that used in these measurements. If the noise 
floor is within 13 dB of that measured in step 7 
above, corrections are made to the measurement data 
to remove the bias generated by the noise floor. 

Measurements of the amplitude accuracy of the phase 
modulation side bands generated by the prototype 
phase modulators are summarized in Fig. 15. The same 
modulator was used for carrier frequencies from 5 to 
300 MHZ. The error in the phase modulation amplitude 
is less than 0.5 dB for modulation frequencies from 
dc to 10% of the carrier. The 10 GHz modulator also 
maintains an accuracy of better than 0.5 dB out to 
500 KHz from the carrier. At 1 GHz the modulation 
amplitude is 1.5 dB high. Once this is measured it 
can be taken into account in the calibration 
procedure. The 45 GHz modulator results shown in 
Fig. 15 should be attainable over the entire WR22 
wavequide bandwidth. 

The performance that can be obtained with this 
measurement technique is illustrated by actual phase 
noise data on oscillator pairs shown in Figs. 15 and 
16. Typical accuracies are f0.6 dB with a noise 
floor at about - 175 dB relative to 1 radian2/Hz. 
The corrections applied to the raw data at 10 GHz are 
shown in Fig. 17. At low frequencies the effect of 
the phase-locked loop is apparent while at the higher 
frequencies the roll-off of the amplifiers are 
important. These effects have been emphasized here 
in order to examine the ability of the calibration 
process to correct for instrumentation gain 
variations. 

V. Conclusion 

We have analyzed several traditional approaches to 
making phase measurements and found that they all 
lacked some element necessary for making phase noise 
measurements from essentially dc out to 10% of the 
carrier frequency with good phase noise floors and an 
accuracy of order 1 dB. By combining several of the 
techniques and adding a phase modulator which is 
exceptionally flat from dc to about 108 of the 
carrier frequency, we have been able to achieve 
excellent phase noise floors, bandwidths of at least 
101 of the carrier, and accuracies of order +0.6 dB. 

-2 5 2 5 2 5 2 5 2 5- 
-l.s ' ' 1 ' "1 1" "1 ' 

0.001 0.01 0.1 1 10 100 

Modulation Frequency (1) in % of Carrier Frequency 

Fig. 14 heasurement of the amplitude error of 
modulation signal versus Fourier frequencies f, for 
these prototype phase modulators. Curves labeled 5, 
100, and 300 MHz were obtained with the modulator 
used in 5 to 1,300 MHz test set. The curve labeled 
10 GHz was obtained with the modulator for the 2 to 
26 GHz test set. The curve labeled 45 GHz was 
obtained with the WR22 test set. 

Two Oscillator Calibration Test @ 5MHz 

I 
III\ 1 ! I Ill!, 

I 

l System A 

A System B + ti4 

I I SLI/I I 
100 Hz 1kHZ 

Log Fourier Frequency (Hz) 

Fig. 15 Demonstration of calibration accuracy for 
two oscillator concept. The curve labeled System A 
shows the measured phase noise of a pair of 5 MHz 
oscillators using the test set shown in Fig. 13. The 
curve labeled System B shows the measured phase noise 
of the same pair of 5 MHz oscillators using a totally 
separate measurement system with the oscillators held 
in phase quadrature with the measurement test set of 
A. The curve labeled System B + X/4 shows the phase 
noise of the same pair of oscillators using test set 
B with and extra cable length of X/4 inserted into 
each signal path. The agreement between the three 
curves is in the worse case f 0.15 dB. 
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Fig. 16 Phase noise measurement on a pair of 10.6 
GHz sources using the new NBS measurement technique. 

a Calibration Correction 
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Fig. 17 Correction factor applied to the measurement 
data made to obtain the results of Fig. 16. 
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1. InCroducCLon 

Tachniques to characterize and to measure the frequency 
and phase fnstabilities in frequency and tine devices 
and in recelvrd radio signals are of fundamental impor- 
tance to a11 manufacturers and users of frequency and 
time technology. 

In 1964, a subcommittee on frequency stability was form- 
ed vithin the Institute of Electrical and Elcccronics 
Engineers (IEEE) Standards Committee IA and. later (in 
1966). in the Technical Committee on Frequency and Time 
vithin the Society of Instrumentation and Measurement 
(SIX). to prepare an IEEE standard on frequency scabili- 
ty. In 1969. this subcommittee completed a document 
proposing dcfinltions for measures on frequency and 
phase stabilities (Barnes, et al.. 1971). These rccom- 
mended measures of instabilttics in frequency generarors 
have gained general acceptance among frequency and time 
users throughout the vorld. 

In this paper, measures in the time and in the frequency 
domains are reviewed. The particular choice as to which 
domain is used depends on the application. Hovever, the 
users are remindad that conversions using mathematical 
formulations (see Appendix I) from one domain to the 
other can prasent problems. 

Yost of the major manufacturers now specify instability 
characteristics of their standards in terms of these 
recommended measures. This paper thus defines and 
formalizes the general practfca of more than a decade. 

2. s Kcasurcs of Freauencv and Phase Ins.abil&y 

Frequency and phase instabilities shall be measured in 
~crms of the instantaneous, normalized frequency depar- 
t.Jre y(t) from the nominal frequency ws and/or by phase 
de?artura j(c), in radians, from the nominal phase 2wjt 
as follow: 

BLfl 
x(t) = *av 

0 

uhere x(t) is the phase departure expressed in units of 
=ime. 

3. ~haracccri-arton of F:eaucncv and Pm 
ns:abi!i:ies 

In the frequency domain, frequency and phase in- 
a;abflity is defined by any of the follovlng one- 
sided s?ec:ral denal:ies (rho Fourier frequency 
rmgrr from 0 co 0): 

S,(f) of y(t) 
S,(f) of 4(t) 

s;(f) of I(t) 
S,(f) of x(t). 

These spectral densicias are related by the 
equations: 

2 
SyW = + S,(f) 

"0 

S)(f) = (21f)2 Sb(f) 

Sx(f) = --+ S&(f) . 
(2*v ) 0 

A device or signal shall be characterized by a plot 
of spectral density vs. Fourier frequency or by 
tabulating discrete values or by equivalent means 
such as a statement of pover law(s) (Appendix I). 

According to the conventional definition 
(Kartarchoff. 1978) of Y(f) (pronounced ‘script 
all”), Y(f) is the ratio of the power in one sida- 
band due to phase modulation by noise (for a 1 Hz 
bandvidth) to the total signal power (carrier plus 
sidebands) , that is, 

Y(fl = Rmr dwicf, am thw-raise sc&l.atLcn sftkkri& 
Total sigrml per 

The conventional definition of Y(f) is ralaced co 
S,(f) by 

f(f) = q(f) 

only if the mean squared phase deviation, <$* (f)> = 
the fntegral.of S,(f) from f co a., is much smaller 
than one radian. In other words, this relationship 
is valid only for Fourier frequencies f far enough 
from the carrier frequency and is always violated 
near the carrier. 

Sfnca S,(f) is the quantity that is generally mca- 
sure4 in frequency standards metrolo~. and Y(f) 
has become the prevailing measure of phase noise 
among manufacturers an4 us*rs of frequency stan- 
dards, s!(f) is redefined as 

Y(f) = M,(f) . 

This redefinition is intended to avoid erroneous 
use of Y(f) in situa:ions where the small angle 
approximation is not valid. In other vorbr. S,(f) 

l See Appendix Note + 17 419 TN-139 
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ir ch. prJfJrrod maasura, sfnca, unmbfguou~ly. It 
alway, can be mbAJur.d. 

b. w: 

In the time domain, frequency inrtAbflity rhaLL bo 
d4fin.d by the NO-JlOpl4 deviation O,(V) which iJ 

the JqrurJ root Of the t’v~-J~ph VArianCe U,‘(r). 
ThfJ VarfJnC., 4, ‘(r), hAJ no dAAd-tina between the 
frequency J~PL~J and in 81~0 called the ALLan 
varfanca. For the rampling timA r. if. writ.: 

where 

The JymbOL < > d4nOt.J An infinitb time Average. 
In practice, the requirement of infinite time 
average 1~ navar fulfilled; the ura of the forego- 
ing terms shall be permitted for finite time 

givJr Jero dead time between frequency measurb- 
m.ntJ. “Residual” implies the known JyJCcmJtic 

effects have been removed. 

If dead time exists betveen the frequency departure 
measurements and this LJ ignored in the computation 
of u,(r). resulting instability values vi11 be 
biased (except for vhite frequency noise). Some of 
the biases have been studied and some correction 
tables published [Bam.~. 1969; LOJA~, 1983; 
Barnes and Allan, 19861. Therefore, the term O,(T) 
shall not be UJJd to describe ruch biased mcJJure- 

mbncs. Rather. if bfaJed inJcabfLicy m4AJur.J are 
made, the information in the references should be 
used to report an unbiared 41cim~t.. 

If the fnicfA1 sampling rate LJ specified as l/r., 
then 1: has been shown that, in gbnaral. YC may 

obtain a more efficient estimate of u,(r) urfng 
vhat ir called “overlapping 4JtfmateJ." ThiJ 
estimate LJ obtained by computing 

N-2m 

c $+*a- *xi+m+v* 
i=l 

where X fJ the number of original time reJfduJ1 
meaJur.m.ntJ spaced by r,(N=X+l, where h ir the 
number of orlglnal frequency measurements of ramp18 
ttme rg ) and I = mr, . 

From the above equation. v. ~44 that or2(r) acts 
Like a second-difference operator on the time 
deviation raJiduALJ--providing a s:a:fonary maaJure 
of the Jcochastic behavior even for nonstationary 
pr0c.ss.s. Additional variances. vhich may be ured 
to describe frequency inJ:abfLicf4J, arc defined in 
Appendix II. 

c. ELock-‘Clmr PredfccLep 

The variation of the tfse difference between A real 
clock And an ideal uniform tin. rcale, also known 
AI time intervaL error, TIE, obrerved over a tbJ8 
inter?a? r:ar:ing a: time to and ending at t,,+t 
JhaLL be defined AJ: 

I 

to + c 
TIE(t) = x(to+t) - x(tO) = y(t')dt' . 

'0 

For fairly ~fmple models. r.gr.JJiOn analysfr can 
provide efffcienc estimates of the TIE (Draper And 
Smith. 1966; CCIR, 1986). In general, there Are 
many .JtimAcorJ pOJJibL4 for Any JtatiJtfCAl quan- 
tity. Ideally, ve vould like an efficient and 
unbiAJ.d estimator. Using the time domain measure 
urz(r) deffned in (b). the following 4Jtimat. of 
the Jtandard deviation (MS) of TIE and irr AJJOC- 

fated Jysr.macic depareur. duo to a Linear 
frequency drift (or its uncertainty) can be ured to 
predict J probable time interval error of a clock 
synchronized at c=tO=O and left frae running there- 
after: 

2 2 x(t 1 
R!!TLEeJt= t 

Y( 
r = t) + ( t O)* 4, 1 

vherc “a” in the normalized Linear frequency drift 
per unit of time (aging) or the uncertainty in the 
drff: eJcfmat4, o, the tvo-~.ampie deviation of 
the initial frequehcy Adjustment. o,(r) the tvo- 
sample deviation describing the random frequency 
instability of the clock at t--r. and x(t,) ir the 
fnftiaL Jynchronfzation uncertainty. The third 
term in the brackets provider an optimum and un- 
biased estimate (under the condition of an optimum 
(RXS) prediction method) in the cases of vhic. 
noise M and/or random valk Fn. The third term LJ 

too opcfmf~cic, by about A factor of 1.4, for 
flicker noise M. and too p4ssfmiJ:ic. by about a 
factor of 3, for vhfte noise PX. 

Thfr l stfmaca is a useful and fairly Jfmple approx- 
imation. In general, a more complete error 
analysis becomes difficult; if carried out, such an 
analysir n44dJ to include cha methods of time pre- 
diction, the uncertainties of the clock parameters. 
using the confidence Lfmics of mcasuremencs defined 
belov. the decalled clock noise modeLJ. Jystemacfc 
effects, etc. 

4. - ConfiOanca 

An l srimacc for O,(I) can be made from a finite data Jet 

vi:h h meaJu:amentr of y2 as foLLovJ: 

n-1 
0 (r) = Y I 6 C (Jj+L - ?j)* I ’ 

j-1 

or, if the data ara time readings x2 : 

X-1 
uyw = I 

- 1 (xj+* - 2x,+l + xQ2 4 . 
ZrI(Y-1) I 

j=l 

The 68 percent confidancc fnterval (or error bar). I,. 
for Gaussian noLs4 of a particular value a,(r) obtained 
from a finite number of samples can be cscima:cd as 
foLLovs: 

I, = o,(r)ire.y-i 

vhers : 

n = total number of data points used in the 
4stima:4, 

0 = an integer as defined in Appendix I. 

"2 *=I - 0.99, 
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=a = 0.87, 
II- 1 - 0.7;. 
1-1 = 0.75. 

AJ .n l xampla of the C~wsian nod.1 with H=lOO, o = -1 
(flicker frequency nolre) and o,(r = 1 second) = lo-“, 
ve may vrico: 

1. - o,(r)*(0.77)*(100)‘~ - o,(r)*(0.077) 

vhich givas : 

u,(r = 1 second) = (1 f 0.01)) x 10-12. 

If K in ~~11, then the plus and minus confidence intar- 
vals become asymmetric and the ae coefficients are not 
valid; hovaver, these confidence intervals can be calcu- 
laced (Leraga and Audoin. 1973). 

If ‘overlapping” ertLoaCer are used, AJ outlined above, 
then the COnfidJnce Lncerval of the escirate can be 
shown to be less than or equal to I, AJ given above 
(Hove, Allan. Barnes, 1981). 

5. 7 for~orReoQgg&g 

a. Nonrandom phenomena should be recognized, for 
example : 

0 any observad time dependency of the JCA- 

tLstLca1 measuras should be atatad; 

0 the method of modeling systematic 
behavior should be specified (for ox- 
ampla. an l JtiMte Of the lfnear fre- 
quency drift vas obtained from the 
coefficients of J linear lJJJC-JqUJraJ 
ragraJsLon to H frequency measureoanCs, 
each vith a specified averaging or sample 
time t and measuramenc bandvidth f,) ; 

0 the l nvLronmenca1 sensLtLvLtLes should be 
JtJtJd (for example, the dependanca of 
frequency and/or phase on temperature, 
magnetic field, barometric pressure, 
vibration, etc.); 

b. Relevant mearuremenc or JpeCLffCatLOn 
parametars should be given: 

0 the method of measurements; 

0 the characteristics of the reference 
Ji&‘d ; 

0 the nominal rignal frequency us: 

0 the measuramant .systam bandvidth f, and 
the corrarponding low P~JJ filtar 
reJponJe; 

0 the tocal measurement time and the number 
of measuremeno H; 

0 the calculatLon techniques (for example. 
decaflr of the window f*mction vhen 
esCiaaCing power Jpectral dens?ties from 
time domain daea. or the asrumpcionr 
about effects of dead-time when artimat- 

ing the two-r~mplJ deviation u,(r)); 

0 the confidanca of the ertlmare (or error 
bar) and ICJ statistical probability 
(e.6. ‘thrae-sigma’); 

0 the environment during oeasurement; 

0 if A p&JJfVe element, such as a ClytAl 
filter, IJ being measured in contraat to 

a frequency and/or time generator. 
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e 1. rover-Lv SoecfI+Lgensi-ha 

Povar-lav Jpeccral dewities ara often employed as rea- 
sonable and accurate models of the random fLuc:uatiolu 
fn precision oscillators. In practice, these random 
fluctuationr can often be raprasanced by the s’um of five 
independent nofse procaJJeJ. and hence: 

Sy(f) = 

t 

+2 
1 

o=-2 
hobo for 0 c f < fh 

0 for f  2 fh 

where he’s are conrtantr, Q'J are LntegcrJ. ar.d f, is 
the high frequency cut-off of a lov paJS filter. HLgh 
frequency divergence LJ elLmtnaced by the res:riCtionJ 

on f in ChiJ eqUACiOn. The idencfficatton and cb.srac- 
tarira:lon of the fLve noise processes are given in 
Table 1, and shown in Fig. 1. 
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The operation of the eountar, ovaraglng the frequency 
for l the t, may bo thought of as a filtering opora- 
tion. Thr transfer funetfon. H(f). of this equivalent 
flltar is then the Fourier transform of tha impulse 
rarponso of the filter. Tha tina domain frequency 
instability Is than given by 

0’ (H.T*r) - J; s,(f) I H(f) I’ df, 

where S,(f) fs the spectral density of fraqwncy fluc- 
tutions. l/r is the measurmmt rate (T-r is the doad 
time betwean measurements). In the case of the ~lo- 
ramp10 varlanca IH(f)lz Is 2(rin 'rrf)/(rrf)l. 'Iha tvo- 
sample variance can thus be computed from 

I 
fh 

oy2(r) = 2 S (f) + df . 
Y (*rf) 

0 
Specifically, for the power law model given, the time 
domain measure also follows a power lav. 

TABLE I- Tbo functional characteristics of the independent noise processes 
used in modeling froquoncy instability of oscillators 

7 3 
Slope charactarlstics of log log plot 

Frequency domain lima-domain 

D*ser.iptfon of s,(f) or S,(f) or 
Noise Process SJ(f) S,(f) 3 (1) 0, (r) Mod.o, (1) 

a 
I 8 P r/2 co 

Random Walk Fraq Kodulrtion -2 -4 1 l/2 1 

Flicker Frequency Modulation -1 -3 0 0 0 

White Frequrncy Modulation 0 -2 -1 -l/2 -1 

Flicker Phase Modulation 1 -1 -2 -1 -2 

bhito Phase Hoduhtion 2 0 -2 -1 -3 

S,(f) - ,+$+--S,(f) - h,P 
0 

$<d - Irl’ 

S,(f) = v;h,T” = v$h,f' (8 = a-2) Q,(f) - Irl"'2 

s, (0 - & h=f”-’ = & h,f’ Xod.o,(r) - 1~1” 

itiLE 2 - Translation of frequency instability measures from spectral donsitfes in 
fraquency domain to varfances in tlma domain end vicm varsa (For Sxf,,r D 1) 

‘Random Walk Frrquency 
1 Kodulatlon 

$eseription of nofso process 

jFLfckor Frrquency Modulation 

$iiite Frequency Modulation 

I 
IFlfckor Phase Hodulacion 

t 
/ 
,b%i:r Phase Hodulacfon 
I 

of(r) - I S,(f) * 

AIf S,(f)lrl 

Blf S,Wr” $[9 *:(r)]f-' 

Cl!? S,(f)lr” $1 c; (r)]fO 

Dlf-'S,(f)lr" ;[9 #; w] fl 

EIf-2S,(f)Ir” 

c = l/2 

1.038 + 3 log,(2wfbr) 
D= 4ti 
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o,~O) = hm2+ r+h a1 =3&,2 + ho k 

1.038 4 3 log (2sf T) 
+h 

1 
(242 v2 

h +h2--lfh’ I. s or w ‘Itro-sAd&duiui 

(2*)2,2 nuLz,‘Lzl 

Instead of the use of o s(r), a Wodifiod Variance. Uod 
This implicitly assumes that the random driving mech- =I *(r) may be wed to characterize frequency instabili- 
l nism for oath term is independent of the others. In ties (Stein, 1985; Allan. 1987). It haa the property of 
addition. there is the implicit assumption that the yielding different dependencr on r for white phase nois* 
mechanism is valid over all Fourier frequencirr, vhich and flicker phase noise. 
may not slvays be true. 

Tha dependence for hod u,(r) 
is f-ala and rml rorpoctively. Hod u,t(r) is defined 
4,: 

The values of he are characteristic models of oscillator 
frequbncy noise. For integer values (as oftan l eeaa to 

2 

be the eere for reasonable models), p = -a - 1, 
for -3 I o < 1, and p = -2 for Q > 1, vhere ~,~(r)-?. 

Hod +, = 

Table 2 gives the coefficients of the translation smong J=l 1 i=J J 
the freq6ency stability measures from time domafn to - 
frequency domein and from frequency domain to time vhere N is the original number of time measurements 

domain. spaced by rO and T = IT. the sample time of choice 
(N=h+l). A device or signal shall be characterized by a 

The slope eharacceriscics of the five indepandant noise plot of u,(r) or u,~(v) or Hod u,(r) or Xod u,‘(r) vs. 

processor are plotted in the frequency and time domains sampling time r. or by tabulating dfscretr values or by 

in Fig. 1 (log-log scale). 
equivalent means l uch as l statement of power law 
(Appendix I). 

2. Oehct 
Several other variances have been introduced by vorkers 
in this field. In particular, before the introduction 
of the two-ramp10 variance, it vas standard practice to 
usa the ssmplr varimca, sz, defined as 

Log Fourier Frequency, f s 2 = ,2 S,(f) (+$+ df. 

ihll II 
t i’\’ ’ 

I I I I I I 
f4 i 1 I I I I 

In practice it may be obtained from a set of mesruro- 
mencs of the frequency of the oscillator as 

The sample variance diverges for some types of noise 
and, therefore, is not generally useful. 

Other variances based on the structure function approach 
can also be defined (Lindsay and Chi, 1976). For 
example, theta are the Hadeaard variance. the three- 
sample variance and the high pass variance (Rutoan 
19iS). They are occasionally used in research and 
scientific vorks for specific purposes. such as 
differentiating betwssn different types of nofse and for 
dealing vith rys:eoaticr and sidabands in tha spectrum. 

Log Fourier Frequexy, f 

W-J I I I I I I I I Allan. D. V., Statisttcs of atomic frequency standards. 

Leg qk) - 
I -!/rl .r, 

\\I I4 
I I,% I Proc. IEEE. Vol. 2.221-230. (Feb 1966). 

I A I 
i I I I I I i I 
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Log Sample lime, t 
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Abshact-Consider a signal generator whose instantaneous 
output voltage V(t) may be written as 

V(t) = [ VO + t(t)] sin [2m0t + (p(f)] 

where V. and r0 aze the nominal amplitude and frequency, res- 
pectively, of the output. Provided that ((1) and G(L) = (dq/(&) 
are sticiently small for all time t, one may define the fractional 
instantaneous frequency deviation from nominal by the relation 

A proposed definition for the measure of frequency stability is 
the spectral density S,(l) of the function y(t) where the spectrum 
is considered to be one sided on a per hertz basis. 

An alternative definition for the measure of stability is the 
infinite time average of the sample variance of two adjacent averages 
of y(f) ; that is, if 

where r ia the averaging period, Ir+, = I* + T, k = 0, 1,2 . . , to is 
arbitrary, md ‘2’ is the time intend between the beginnings of 
two successive measurements of average frequency; then the 
second measure of stability is 

where ( ) denotes infinite time average and where T - 7. 
ln practice, data records are of finite length and the lruklte 
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time averages implied in the definitions are normally not available; 
thus estimates for the two measures must be used. E&mates of 
L&(f) would be obtained from suitable averages either in the time 
domain or the frequency domain. An obvious estimate for vi(~) is 

Parameters of the measuring system and estimating procedure 
are of critical importance in the specification of frequency stability. 
In practice, one should experimentally establish confidence limits 
for an estimate of frequency stability by repeated trials. 
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GLOSSARY OP SYMBOLS 

Bias function for variances based 
on finit.43 samples of 8 process 
with a power-law spectral density. 
@= 1131.1 
A real constant defined by (70). 
Real CQIlstanta. 
A real, deterministic function of 
time. 
Expected value of the &mred 
second difference of z(t) with lag 
time T. See (80). 
Fourier frequency variable. 
High-frequency cutoff of an ideal- 
ized infinitely sharp cutoff low-pass 
filter. 
Low-frequency cutoff of an ideal- 
ized infinitely sharp cutoff, high- 
pass filter. 
A real function of time. 
Positive real coefficient of f” in a 
power series expansion of the spec- 
tral derkty of the function y(l). 
Integers, often a dummy index of 
summation. 
Posibive integer giving the number 
of cycles averaged. 
Positive integer giving the number 
of data points used in obtaining a 
sample variance. 
A nondeterministic function of time. 
Autocovariance function of y(t). 
see (58). 
Positive real number defintkl by 
r = T/s. 
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s 

w.0 

S.(f) 

T 

4 
4 

U 

v(t) 

V, 

Vv(O 

VOV 

40 

v’(t) 

40 

a 

Y 

6.h - 1) 

4) 

An intermediate term used in 
deriving (23). The definition of S 
is given by (64). 
One-sided (power) spectral density 
on a per hertz basis of the pure real 
function g(t). The dimensions of 
S,(f) are the dimensions of g’(t)/f. 
A definition for the measure of fre- 
quency stability. One-sided (power) 
spectral density of y(t) on a per 
hertz basis. The dimensions of 
S,(j) are Hz-‘. 
Time interval between the begin- 
nings of two successive messure- 
merits of average frequency. 
Time variable. 
An arbitrary fixed instant of time. 
The time coordinate of the begin- 
ning of the kth measurement of 
average frequency. By definition, 
t 1+, = t, + T, k = 0, 1, 2 . . . . 
Dummy variable of integration; 
u = rf7. 
Instantaneous output voltage of 
signal generator. See (2). 
Nominal peak amplitude of signal 
generator output. See (2). 
Instantaneous voltage of reference 
tTignfd. see (40). 
Peak amplitude of reference signal. 
see (40). 
V&age output of ideal product 
detectur. 
LJW-pass tilbred output of product 
detector. 
IX.& function of time related to the 
phase of the signal V(t) by z(t) = 
Idt>lI@=d* 
A predicted value for z(t). 
Fractional frequency offset of V(t) 
from the nominal frequency. See (7). 
Average fractional frequency offset 
during the kth measurement in- 
terval. sea (9). 
The sample average of N successive 
values tsf Q*. See (76). 
Nondeter~ministic (noise) function 
with (power) spectral density given 

by (25). 
Exponent of f for a power-law 
spectral density. 
Positive real constant. 
The Kronecker 6 function defined 

(1, if r = 1 
by 6,(r - 1) 3 

1 0. otherwke. 
Amplitude fluctuations of signal. 
see (2:. 

Exponent of r. See (29). 
Instantaneous frequency of V(t). 
Defined by 

Nominal (constant) frequency of 
V(L). 
The Fourier transform of n(t). 
Sample variance of N averages 
of y(t), each of duration T, and 
spaced every T units of time. 
See (10). 
Average value of the sample vari- 
ance aE(‘L’, T, r). 
A second choice of the definition for 
the measure of frequency stability. 
Defined by a:(r) = (r:(hi = 2, 
T = T, 7)). 

Time stability measure defined by 
u:(r) = r’u:(r). 

Duration of averaging period of 
y(t) to obtain ar. See (9). 
Instantaneous phase of V(t). De- 
fined by a)(t) = 2nd + q(t). 
Instantaneous phase fluctuations 
about the ideal phase 2wot. See (2). 
Mean-square time error for Doppler 
radar. See (82). 
Angular Fourier frequency variable. 

I. INTRODUCTION 

HE measurement of frequency and fluctuations in 
frequency has received such great attention for 
so many years that it is surprising that the con- 

cept of frequency stability does not have a universally 
accepted definition. At least part of the reason has been 
that some uses are most readily described in the fre- 
quency domain and other uses in the time domain, as 
well as in combinations of the two. This situation is 
further complicated by the fact that only recently have 
noise models been presented that both adequately de- 
scribe performance and allow a translation between the 
time and frequency domains. Indeed, only recently has 
it been recognized that there can be a wide discrepancy 
between commonly used time domain measures them- 
selves. Following the NASA-IEEE Symposium on Short- 
Term Stability in 1964 and the Special Issue on Fre- 
quency Stability in the F'WCEEDINGS OF THE IEEE, 
February 1966, it now seems reasonable to propose a 
definition of frequency stability. The present paper is 
presented as technical background for an eventual IEEE 
standard definition. 

This paper attempts to present (as concisely as prac- 
tical) adequate, self-consistent definitions of frequency 
stability. Since more than one definition of frequency 
stability is presented, an important part of this paper 
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(perhaps the most important part) deals with transla- 
tions among the suggested definitions of frequency sta- 
bility. The applicability of these definitions to the more 
common noise models is demonstrated. 

Consistent with an attempt to be concise, the refer- 
ences cited have been selected on the basis of being of 
most value to the reader rather than on the basis of 
being exhaustive. An exhaustive reference list covering 
the subject of frequency stability would itself be a 
voluminous publication. 

Almost any signal generator is influenced to some ex- 
tent by its environment. Thus observed frequency in- 
stabilities may be traced, for example, to change8 in 
ambient temperature, supply voltages, magnetic field, 
barometric pressure, humidity, physical vibration, or 
even output loading, to mention the more obvious. While 
these environmental influence8 may be extremely im- 
portant for many applications, the definition of fre- 
quency stability presented here is independent of these 
causal factors. In effect, we cannot hope to present an 
exhaustive list of environmental factors and a prescrip- 
tion for handling each even though, in some cases, these 
environmental factors may be by far the most im- 
portant. Given a particular signal generator in a partic- 
ular environment, one can obtain its frequency stability 
with the measures presented below, but one should not 
then expect an accurate prediction of frequency stability 
in a new environment. 

It is natural to expect any definition of stability to 
involve various statistical considerations such as sta- 
tionarity, ergodicity, average, variance, spectral density, 
etc. There often exist fundamental ditficulties in rigorous 
attempts to bring these concepts into the laboratory. It 
is worth considering, specifically, the concept of sta- 
tionarity since it is a concept at the root of many statis- 
tical discussions. 

A random process is mathematically defined as sta- 
tionary if every translation of the time coordinate maps 
the ensemble onto itself. As a necessary condition, if one 
looks at the ensemble at one instant of time t, the dis- 
tribution in values within the ensemble is exactly the 
same as at any other instant of time P. This is not to 
imply that the elements of the ensemble are constant 
in time, but, as one element change8 value with time, 
other elements of the ensemble assume the previous val- 
ues. Looking at it in another way, by observing the 
ensemble at some instant of time, one can deduce no 
information as to when the particular instant was chosen. 
This same sort of invariance of the jo&t distribution 
holds for any set of times ti, b, -**, t, and its transla- 
tion ti + T, b + T, + * *, t, + T. 

It is apparent that any ensemble that has a finite 
past as well as a finite future cannot be stationary, and 
this neatly excludes the real world and anything of 
practical interest. The concept of stationarity does vio- 
lence to concepts of causality since we implicitly feel 
that current performance (i.e., the applicability of sta- 

tionary statistics) cannot be logically dependent upon 
future events (i.e., if the process is terminated some time 
in the distant future). Also, the verification of station- 
arity would involve hypothetical measurements that are 
not experimentally feasible, and therefore the concept of 
stationarity is not directly relevant to experimentation. 

Actually the utility of statistics is in the formation 
of idealized models that reasonably describe significant 
observables of real systems. One may, for example, con- 
sider a hypothetical ensemble of noises with certain 
properties (such as stationarity) as a model for a par- 
ticular real device. If a model is to be acceptable, it 
should have at least two properties: first, the model 
should be tractable; that is, one should be able to easily 
arrive at estimates for the elements of the models; and 
second, the model should he consistent with observab&~ 

derived from the real device that it is simulating. 
Notice that one does not need to know that the device 

was selected from a stationary ensemble, but only that 
the observables derived from the device are &tent 

with, say, elements of a hypothetically stationary en- 
semble. Notice also that the actual model used may 
depend upon how clever the experimenter-theorist is in 
generating models. 

It is worth noting, however, that while some texts 
on statistics give “tests for stationarity,” these teats are 

almost always inadequate. Typically, these tests de- 
termine only if there is a substantial fraction of the 
noise power in Fourier frequencies whose periods are of 
the same order as the data length or longer. While this 
may be very important, it is not logically essential to 
the concept of stationarity. If a nonstationary model 
actually becomes common, it will almost surely be be- 
cause it is useful or convenient and not because the 
process is “actually nonstationary.” Indeed, the phrase 
“actually nonstationary” appears to have no meaning 
in an operational sense. In short, stationarity (or non- 
stations&y) is a property of models, not a property of 
data [l]. 

Fortunately, many statistical models exist that ade- 
quately describe most present-day signal generators; 
many of these models are considered below. It is obvious 
that one cannot guarantee that all signal generators are 
adequately described by these models, but the author8 
do feel they are adequate for the description of most 
signal generator8 presently encountered. 

II. STATEMENT OF THE PROBLEM 
To be useful, a measure of frequency stability must 

allow one to predict performance of signal generators 
used in a wide variety of situations as well as allow 
one to make meaningful relative comparisons among 
signal generators. One must be able to predict perform- 
ance in devices that may most easily be described either 
in the time domain, or in the frequency domain, or in 
a combination of the two. This prediction of perform- 
ance may involve actual distribution functions, and thus 
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second moment measures (such as power spectra and 
variances) are not totally adequate. 

Two common types of equipment used to evaluate the 
performance of a frequency source are (analog) spectrum 
analyzers (frequency domain) and digital electronic 
counters (time domain). On occasion the digital counter 
data are converted to power spectra by computers. One 
must realize that any piece of equipment simultaneously 
has certain aspects most easily described in the time 
domain and other aspects most easily described in the 
frequency domain. For example, an electronic counter 
has a high-frequency limitation, an experimental spectra 
are determined with finite time averages. 

Research has established that ordinary oscillators dem- 
onstrate noise, which appears to be a superposition of 
causally generated signals and random nondeterministic 
noises. The random noises include thermal noise, shot 
noise, noises of undetermined origin (such as flicker 
noise), and integrals of these noises. 

One might well expect that for the more general cases 
one would need to use a nonstationary model (not sta- 
tionary even in the wide sense, i.e., the covariance sense). 
Nonstationarity would, however, introduce significant dif- 
ficulties in the passage between the frequency and time 
domains. It is interesting to note that, so far, experi- 
menters have seldom found a nonstationary (covariance) 
model useful in describing actual oscillators. 

In what follows, an attempt has been made to separate 
general statements that hold for any noise or perturba- 
tion from the statements that apply only to specific mod- 
els. It is important that these distinctions be kept in 
mind. 

III. BACKGROUND AND DEFINITIONS 

To discuss the concept of frequency stability imme- 
diately implies that frequency can change with time and 
thus one is not considering Fourier frequencies (at least 
at this point). The conventional definition of instantan- 
eous (angular) frequency is the time rate of change of 
phase; that is 

where a(t) is the instantaneous phase of the oscillator. 
This paper uses the convention that time-dependent 
frequencies of oscillators are denoted by v(t) (cycle fre- 
quency, hertz), and Fourier frequencies are denoted by 
0 (angular frequency) or f (cycle frequency, hertz) where 
o = %j. In order for (1) to have meaning, the phase a(t) 
must be a well-defined function. This restriction imme- 
diately eliminates some “nonsinusoidal” signals such as 
a pure random uncorrelated (“white”) noise. For most 
real signal generators, the concept of phase is reasonably 
amenable to an operational definition and this restric- 
tion is not serious. 

Of great importance to this paper is the concept of 
spectral density, S,(f) . The notation S,(f) is to repre- 

sent the one-sided spectral density of the (pure real 1 
function g(t) on a per hertz basis; that is, the total 
“power” or mean-square value of g(t) is given by 

Since the spectral density is such an important con- 
cept to what follows, it is worthwhile to present some 
important references on spectrum estimation. There are 
many references on the estimation of spectra from data 
records, but worthy of special note are [2]-151. 

IV. DEFINITION OF MEASURES OF FREQUENCY STABILITY 
(SECOND-MOMENT TYPE) 

A. General 

Consider a signal generator whose instantaneous out- 
put voltage V(t) may be written as 

V(t) = [V, + c(t)] sin [2rv0t + cp(l)] (2) 

where V, and Y,, are the nominal amplitude and fre- 
quency, respectively, of the output and it is assumed 
that 

and 

‘k0 I 
I I -i;;- << 1 (3) 

0 

/ I $y <<l 
0 

for substantially all time t. Making use of (1) and (2) 
one sees that 

a@ = 2rvnt + q(t) (5) 

and 

40 = yo + & do. (6, 

Equations (3) and (4) are essential in order that v(t) 
may be defined conveniently and unambiguously (see 
measurement section). 

Since (4) must hc valid evrn to speak of an instantan- 
eous frequency, there is no real need to distinguish 
stability measures from instability measures. That is. 
any fractional frequency stability measure will be far 
from unity, and the chance of confusion is slight. It is 
true that in a very strict sense people usually mensurc 
instability and sneak of stability. Because the chances of 
confusion are so slight, the authors have chosen to con- 
tinue in the custom of measuring “instability” and speak- 
ing of stability (a number always much less than unity). 

Of significant interest to many people is the radio fre- 
quency (RF) spectral density &(.f). This is of direct 
concern in spectroscopy and radar. However, this is not 
a good primary measure of frequency stability for two 
reasons. First, fluctuations in the amplitude c(t) contrib- 
ute directly to S,,(f) ; and second, for many cases whc11 
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c(t) is insignificant, the RF spectrum S~(f1 is not the Fourier frequency range below one cycle per year. 
uniquely related to the frequency fluctuations [6]. In order to improve comparability of data, it is important 

to specify particular N and T. For the preferred definition 
B. General:First Definition of the Measure of Frequency Fye recommend choosing N = 2 ad T = 7 (i.e., no tiead 
Stability-Frequency Domain time between measurementa). Writing (o:(N = 2, T = r, 2)) 

By definition, let aa U:(T), the Allan variance [8], the proposed measure of 
frequency stability in the time domain may be written as 

where (p(t) and v0 are as in (2). Thus y(t) is the in- 
stantaneous fractional frequency deviation from the nom- 
inal frequency v,,. A proposed definition of frequency 
stability is the spectral density S,(f) of the instantaneous 
fractional frequency fluctuations y (t) . The function S,(f) 
has the dimensions of He-l. 

One can show [7] that if S,(j) is the spectral density 
of the phase fluctuations, then 

Thus a knowledge of the spectral density of the phase 
fluctuations &,(j) allows a knowledge of the spectral 
density of the frequency fluctuations S,(f) , the first def- 
inition of frequency stability. Of course, S,(j) cannot 
be perfectly measured-this is the case for any physical 
quantity; useful estimates of S”(j) are, however, easily 
obtainable. 

C. Generd: Second Definition of the Measure of Fre- 
quency Stability-Tim-e Domain 

The second definition is based on the sample variance of 
the fractional frequency fluctuations. In order to present 
this measure of frequency stability, define & by the 
relation 

where t,+, = t, + T, k = 0, 1, 2, . . . , T ia the repetition 
interval for measurements of duration 7, and to ia arbitrary. 
Conventional frequency counters measure the number of 
cycles in a period r; that is, they measure ~(1 + @. 
When T is 1 s they count the number of ~(1 + BI). 
The second measure of frequency stability, then, is 
defined in analogy to the sample variance by the relation 

where (g) denotes the infinite time average of g. This 
measure of frequency stability is dimensionless. 

In many situations it would be wrong to assume that 
(10) converges to a meaningful limit aa N -+ 03. First, 
of course, one cannot practically let N approach infinity 
and, second, it is known that some actual noise proceaaes 
contain substantial fractions of the total noise power in 

for T = 7. 
Of course, the experimental estimate of U:(T) must be 

obtained from finite samples of data, and one can never 
obtain perfect confidence in the estimate; the true time 
average is not realizable in a real situation. One estimates 
u:(7) from a finite number (say, m)‘of valuea of 4(2, 2, 7) 
and averages to obtain an e&mate of G(r). Appendix I 
shows that the ensemble average of uz(2, T, T) is convergent 
(i.e., aa m + m) even for noise pmceaaea that do not have 
convergent (uf(N, T, T)) aa N + 0~. Therefore, d(r) haa 
greater utility as an idealization than doea (u:( QD, ‘z, r)) 
even though both involve assumptiona of infinite averages. 
In &ect, increasing N causes <(N, T, T) to become more 
sensitive to the low-frequency componenta of S,(j). In 
practice, one must diatinguiah between an experimental 
estimate of a quantity (say, of U:(T)) and ita idealist4 
value. It is reasonable to believe that extensiona to the 
concept of statistical (“quality”) control [9] may prove 
useful here. One should, of course, specify the actual 
number m of independent aampler, used for an e&mate 
of u:(T). 

In summary, therefore, S,(j) is the proposed measure of 
(itaneous) frequency stability in the (Fourier) 
frequency domain and u:(r) ia the proposed measure of 
frequency stability in the time domain. 

D. Dietn3utim.s 

It is natural that people Grst become involved with 
second moment measures of etatistical quantities and only 
later with actual distributions. This is certainly true with 
frequency stability. While one can specify the argument 
of a distribution function to be, say (&+, - g,), it makes 
sense to postpone such a specfication until a real use has 
materialized for a particular distribution function. Tbii 
paper does not attempt to specify a preferred distribution 
function for frequency fluctuations. 

E. Treatme& of Systematic Variations 

I) G-al: The definition of frequency stability u:(r) 
in the time domain is useful for many situations. However, 
some oscillators, for example, exhibit an aging or almost 
linear drift of frequency with time. For some applications, 
this trend may be calculated and should be removed [8] 
before estimating U:(T). 

In general, a systematic trend is perfectly deterministic 
(i.e., predictable) while the noise is nondeterministic. 
Consider a function g(t), which may be written in the form 
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g(t) = 40 + n(t) (12) 

where c(l) is some deterministic function of time and n(t), 
the noise, is a nondeterministic function of time. We will 
defbe c(t) to be the systemrrtic trend to the function g(t). 
A problem of signif&nce here is to determine when and 
in what 8en8e c(t) is measurable. 

a) Specific Case-Linear Drift: As an example, if we 
consider a typical quartz crystal oscillator whose fractional 
frequency deviation is y(t), we may let 

With these conditions, c(t) is the drift rate of the oscil- 
lator (e.g., IO-lo/day) and q(t) is related to the fre- 
quency “noise” of the oscillator by a time derivative. 
One see8 that the time average of g(t) becomes 

g(t) dt 
r.+T 

s 
n(t) dt 

1. 
04) 

where c(t) = c, is assumed to be the constant drift rate 
of the oscillator. In order for c1 to be an observable, 
it is natural to expect the average of the noise term to 
vanish, that is, converge to zero. 

It is instructive to assume [8], [lo] that in addition 
to a linear drift, the oscillator is perturbed by a flicker 
noise, i.e., 

(15) 

where h-, is a constant (see Section V-A-2) and thus, 

lo, f > fA 
for the oscillator we are considering. With these assump- 
tions, it is seen that 

lim $ J 
;.+T 

n(t) dt = K(0) = 0 (17) 
r-r 1. 

and that 

ii {variance [$ [y”n(t) dt]} = 0 (18) 

where K(f) is the fourier transform of n(t). Since L%(O) 
= 0, r(O) must also vanish both in probability and in 
mean square. Thus, not only doe8 n(t) average to zero, 
but one may obtain arbitrarily good confidence on the 
result by longer averages. 

Having shown that one can reliably estimate the drift 
rate cl of this (common) oscillator, it is instructive to 
attempt to fit a straight line ta the frequency aging. 
That is, let 

and thus 

g(t) = y(t) 09) 

g(t) = co + c1(t - lo) + n’(t) (W 

where c,, is the frequency intercept at t = t,, and c1 is 
the drift rate previously determined. A problem arises 
here because 

and 

S.,(f) = S.0) (21) 

FE {variance [i l:“‘n’(t) dt]} = - (22) 

for the noise model we have assumed. This fOllOW8 from 
the fact that the (infinite N) variance of a flicker noise 
process is infinite [7], [S] , [lo]. Thus, c+ cannot be 
measured with any realistic precision, at least, in an 
absolute sense. 

We may interpret these results as follows. After ex- 
perimenting with the oscillator for a period of time one 
can fit an empirical equation to y(t) of the form 

y(t) = co + tcl + n’(t), 

where n’(t) is nondeterministic. At some later time it is 
possible to reevaluate the coefficients c,, and cl. Accord- 
ing to what has been said, the drift rate c1 should be 
reproducible to within the confidence estimates of the 
experiment regardless of when it is reevaluated. For CO, 
however, this is not true. In fact, the more one attempts 
to evaluate c,, the larger the fluctuation8 are in the 
result. 

Depending on the spectral density of the noise term, 
it may be possible to predict future measurements of 
c,, and to place realistic confidence limits on the predic- 
tion [ 111. For the case considered here, however, these 
confidence limits tend to infinity when the prediction 
interval is increased. Thus, in a certain sense, co ir 
“mea8urable” but it is not in statistical control (to use 
the language of the quality control engineer [9] ). 

V. TRANSLATIONS AMONG FREQUENCY STABILITY 
MEASURES 

A. Frequency Domain to Time Domain 

1) General: It is of value to define r = T/T; that is, 
r is the ratio of the time interval between successive 
measurements to the duration of the averaging period. 
Cutler ha8 shown (see Appendix I) that 

N (sin’ (4711 
=- - df S,(j) q-q- . 

(N - 1) 

(23) 

Equation (23) in principle allows one to calculate the 
time-domain stability (ui(N, T, I)) from the frequency- 
domain stability S.(f). 

.+?) Specific Model: A model that ha8 been found use- 
ful [8], [lo]-[ 131 consists of a set of five independent 
noise processes z,,(t), n = -2, -1, 0, 1,2, such that 

* See Appendix Note # 19 
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v(t) = z-a(t) + z-lo) + 20(l) + Zl(O + 4) 

and the spectral density of zn is given by 

111 

lo, I > fr,n = -2, -l,O, 1, 2, 

where the /I.,, are constants. Thus, S,,(f) becomes 

S.0) = h-j-” + h-j-’ + A, + h,j + hJ2, cw 

forOSf5frmdMf) is assumed to be negligible beyond 
this range. In effect, each z. contribub to both S,(l) and 
#(N, T, T)) independently of the other b. The con- 
tributions of the z. to (u:(N, T, r)) are tabulated in 
Appendix II. 

Any electronic device haa a tin% bandwidth and this 
certainly applies to frequency-measuring equipment also. 
For fractional frequency fluctuations v(t) whose spectral 
density varies as 

S,(l) -Y, a 2 -1 (27) 

for the higher Fourier components, one sees (from 
Appendix I) that (ai(N, T, 7)) may. depend on the exact 
ahape of the frequency cutoff. This is true because a 
substantial fraction of the noise “power” may be in these 
higher Fourier componenta. As a simplifying assumption, 
this paper assume8 a sharp cutoff in noise “power” at the 
frequency j, for the noise models. It is apparent from the 
tablea of Appendix II that the time domain measure of 
frequency stability may depend on 1, in a very important 
way, and, in some practical cases, the actual shape of the 
frequency cutoff may be very important [7]. On the 
other hand, there are many practical measurements 
where the value of /A has little or no &act. Good practice, 
however, dictates that the system noise bandwidth f, 
should be specified with any results. 

In actual practice, the model of (24)-(26) seema to fit 
almost all real frequency sources. Typically, only two or 
three of the h-coefficients are actually significant for a 
real device and the others can be neglected. Because of 
its applicability, this model is used in much of what 
follows. Since the L. are assumed to be independent noises, 
it is normally sufficient to compute the eRecta for a 
general z. and recognize that the superposition can be 
accomplished by simple additions for their contributions 
t.0 40) or (&N, T, 4). 

B. Time Domain to Frequency Domain 

1) GencraZ: For general (a:(N, T, T)) no simple pre- 
scription is available for translation into the frequency 
domain. For this reason, one might prefer S,(l) as a 
general measure of frequency stability. This is especially 
true for theoretical work. 

2) Spect$c Model: Equations (24)~(26) form a realistic 
model that fita the random nondeterministic noises found 
on most signal generators. Obviously, if this is a good 
model, then the tables in Appendix II may be used 
(in reverse) to translate into the frequency domain. 

Allan [8] and Vessot [12] showed that if 

where a is a constant, then 

for N and r = T/r held constant. The constant c ia 
related to u by the mapping shown’ in Fig. 1. If (23) 
and (23) hold over a reasonable range for a signal gen- 
erator, then (23) can be substituted into (23) and evalua&d 
to determine the constant A. from measurementa of 
(o:(N, T, t)). It should be noted that the model of (28) 

and (29) may be easily extended to a superposition of 
similar noises as in (26). 

C. Trandatioru Among the Time-Domain Meawrea 

I) General: Smce (ui(N, T, 7)) ia a function of N, T,. 
and r (for some types of noise jr is alao important), it ia 
very desirable to be able to translate among d8erent. 
sets of N, T, and 7 (f, held constant). This is, however,. 
not possible in general. 

t) Spe&ic Model: It ie useful to restrict consideration 
to a case described by (28) and (23). Superpoaitiona of 
independent noiaea with dit.Ierent power-law typea of 
spectral densities ‘(i.e., d&rent a) can alao he treated by 
this technique, e.g., (26). One. may define two “bias 
functions,” B, and B, by the relations [13] 

B1(N’r’ ‘) - (42, T, 7)) 
b-t(N, T, 4) 

and 

B2(fp p) - (42, T, r)) 
($2, T, 7)) 

(31). 

where t = T/s and P is related to a by the mapping of 
Fii. 1. In words, B, is the ratio of the average variance 
for N samples to the average variance for two samples 
(everything else held constant), while B, ia the ratio of 
the average variance with dead time between measure-- 
me& (r # 1) to that of no dead time (r = 1 and with 
N = 2 and r held constant). These functions are tabulated 
in [13]. Figs. 2 and 3 show a computer plot of 
B,(N, t = 1, cc) and B&, PC). 

Suppose one, has an experimental estimate of (u:(N,, 
T,, 7,)) and its spectral type is known, i.e., (23) and (29) 
form a good model and p is known. Suppose also that one 
wishes to know the variance at some other set of measure- 
ment parameters N,, T,, r2. An unbiased estimate of 
(ut(N,, T,, T,)) may be calculated by 

1 It should be noted that in Allan ISI, the exponent (I cor- 
responde to the spectrum of phase fluctuations while variances 
are taken over average frequencv fluctuations. In the present 
paper, o is identical to the exponent (I + 2 in [Sl. 
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Fig. 1. c - o mapping. 

n- I663 

Fig. 2. Function BxW, r = 1, c). 

+:(Na, Tz, 4) = (;) 

Bl(N*, r2, dBdt2, d . 
BdN 1 t ~1 t r)&(c, d 1 (u:(N 

I’ 
T,, z,)) 

’ (32) 

where tl = Tl/rl and 5s = T~/Q. 
3) General: While it is true that the concept of the 

bias functions Bl and B2 could be extended to other 
processes besides those with the power-law types of 
spectral densities, this generalization has not been done. 
Indeed, spectra of the form given in (28) [or super- 
positions of such spectra as in (ZS)] seem to be the 
most common types of nondeterministic noises encoun- 
tered in signal generators and associated equipment. For 
other types of fluctuations (such as causally generated 
perturbations), translations must be handled on an in- 

,dividual basis. 

VI. APPLICATIONS OF STABILITY MEASURES 

Obviously, if one of the stability measures is exactly 
the important parameter in the use of a signal generator, 
the stability measure’s application is trivial. Some non- 
~,trivial applications arise when one is interested in a dif- 

a’ 

Fig. 3. Bias function &(t, P) 

ferent parameter, such as in the use of an oscillator in 
Doppler radar measurements or in clocks. 

A. Doppler Radar 

1) General: From its transmitted signal, a Doppler 
radar receives from a moving target a frequency-shifted 
return signal in the presence of other large signals. These 
large signals can include clutter (ground return) and 
transmitter leakage into the receiver (spillover). In- 
stabilities of radar signals result in noise energy on the 
clutter return, on spillover, and on local oscillators in 
the equipment. 

The limitations of subclutter visibility (SCV) rejcc- 
tions due to the radar signals themselves are related to 
the RF power spectral density S,(f). The quantity typi- 
cally referred to is the carrier-to-noise ratio and can be 
mathematically approximated by the quantity 

The effects of coherence of target return and other 
radar parameters are amply considered in the literature 
[14]-[17]. 

2) Special Case: Because FM effects generally pre- 
dominate over AM effects, this carrier-to-noise ratio is 
approximately given by [6] 

for many signal sources provided If - ~“1 is sufficiently 
greater than zero. (The factor of f arises from the fact 
that S,(f) is a one-sided spectrum.) Thus, if f - VI) is 
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:L frequency pcpnrntion from the carrier, the carrier-to- 
noise ratio at that point is approximately 

fS,(lf - 4) = 5 (j+.(lj - bl). (34) 

B. Clock Errors 

1) Gene&: A clock is a device that counts the cycles 
of a periodic phenomenon. Thus, the reading error s(t) 
of a clock run from the signal given by (2) is 

and the dimensions of r(t) are seconds. 
If this clock is a secondary standard, then one could 

have available some past. history of t(t), the time error 
relative to the standard clock. It often occurs that one 
is intcrcstcd in predicting the clock error x(t) for some 
future date, say t,, + +, where t,, is the present date. 
Obviously, this is a problem in pure prediction and can 
be handled by conventional methods [3]. 

3) Special Case: Although one could handle the predic- 
tion of clock errors by the rigorous methods of prediction 
theory, it is more common to use simpler prediction 
methods [lo], [ll]. In particular, one often predicts a clock 
error for the future by adding to the present error a 
correction- that is derived from the current rate of gain 
(or loss) of time. That is, the predicted error i(to + I) 
is related to the past history of x(t) by Assume that cos [v(t)] has essentially no power in Fourier 

frequencies f in the region f 2 f:. The effect of the low-pass 

i(L + T) = x(fg,) + T 
r(ln) - X(1” - 7J 1 . 

T 
(36) * filter then is to remove the second term on the extreme 

right of (42); that is 

11:s 

y(t). One of the most common techniques is a hetcrodync 
or beat frequency technique. In this method, the signal 
from the oscillator to be tested is mixed with a reference 
signal of almost the same frequency as the test oscillator 
in order that one is left with a lower average frequency 
for analysis without. reducing the frequency (or phase) 
fluctuations themselves. Following Vessot et al. [18], 
consider an ideal reference oscillator whose output signal 
is 

V,(t) = Vo, sin 2rvot (40) 

and a second oscillator whose output voltage V(t) is 
given by (2): v(t) = [V, + c(t)] sin [2w,t + p(t)]. Let 
these two signals be mixed in a product detector; that is, 
the output of the product detector u(t) is equal to the 
product yV(t) X V,(t), where y is a constant (see Fig. 4). 

Let u(t), in turn, be processed by a sharp low-pass filter 
with cutoff frequency 1: such that 

One may write 

0 < I* < 1.: < Yn. (41) 

= ylr,,(F/‘, + c)[sin 2m0t][sin (%-uOl + co)] 

= u(f) = y @p (1 + $-)[os (p - cos (4nWJ + cp)]. 
d 

(42) 

It is typical to let T = 1. 
Thus, the mean-square error of prediction for T = T 

becomes 

wo + 7) - wo + 41’) 

u’(f) = y v (1 + +) cos q(f). (43) 
0 

This separation of terms by the filter is correct only if 
l[+(t)/2rv,]l << 1 for all t (4). 

= (Ml + T) - 2.r(1,) + dto - r)]‘), (37) 
The following two cases are of interest. 

Case I: The relative phase of the oscillators is ad- 
which, with the aid of (ll), can be written in the form justed so that Iv(t)! < 1 (in-phase condition) during 

u40 + 7) - i(fo + r)]‘) = 27*@;(r). (38) 
the period of measurement. Under these conditions 

One can define a time stability measure U:(T) by v’(t) Y x vo,v0 + y? V,,c(f) 1 (44) 
u:(T) = **u;(I). (39) 

Clearly, however, the actual errors of prediction of clock 
readings are dependent on the prediction algorithm used 
and the utility of such a definition as U:(T) is not great. 
Caution should be used in employing this definition. 

since cos v(t) =: 1. That is to say one detects the ampli- 
tude noise c(t) of the signal. 

Case ZZ: The relative phase of the oscillators is ad- 
justed to be in approximate quadrature; that is 

VII. MEASUREMEST TECHNIWES FOR FREQUENCY 
STABILI~ 

A. Heterodyne Techniques (General) 

It is possible for oscillators to be very stable and 
values of U”(T) can he as small as 10-l* in some state-of- 
the-art equipment. Thus, one often needs measuring tech- 
niqucs CIl]Xlt)le of rrsolving Wry small fluctuations in 
8 See Appendix Note # 20 

cp’(O = 49 + ; 

where /v’(t) I < 1. Under these conditions, 

cos q(t) = sin q’(t) = d(t) 
and 

(43 

(46). 

r’(f) = $ 1’,,1’“+9’(1) + ; v,,,‘(r)c(t). (47) 
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Fig. 4. Heterodyne scheme. 

If it is true that ][c(t)/Vo]j < 1 for all t (3), then 
(47) becomes 

VW = ; vo. vodtt) ; WV 
that is, v’(t) is proportional to the phase fluctuations. 
Thus, in order to obeerve p’(t) by this method, (3) and 
(4) must be valid. For ditrerent average phase values, 
mixtures of amplitude and phase noise are observed. 

In order to maintain the two signals in quadrature for 
long observational periods, the reference oscillator can 
be a voltage-controlled oscillator (VCO) and one may 
feed back the phase error voltage as defined in (43) to 
control the frequency of the VCO [ 191. In this condition 
of the phase-locked oscillator, the voltage v’(t) is the 
analog of the phase fluctuations for Fourier frequencies 
above the loop cutoff frequency of the locked loop. For 
Fourier frequencies below the loop cutoff frequency of 
the loop, v’(t) is the analog of frem fluctuations. 
In practice, one should measure the complete servo-loop 
reaponee. 

B. Period Meawement 

Aaeume one has an oscillator whose voltage output 
may be represented by (2). If [[c(tl/V~]I Q: 1 for all 
t and the total phaee 

*w = 2nd + a(0 6) 

ir, a monotonic function of time (that is, I[+(t)/2*r0]( 5 l), 
then the time t between suoeeeaive positive going aero 
uwuinga of V(t) is related to the average frequency during 
the in-al T. spedicauy 

1 - = *o(l + j3. (49) T 

If one leta 7 be the time between a positive going zero 
croeaing of V(t) and the Mth successive positive going 
sero crossing, then 

f = I,(1 + s.). m 

If the variationa AT of the period are amall compared to 
the average period so, Cutler and Searle [7] have shown 

that one may make a reasonable approximation to 
(u:(N, T, ro)) using period measurements. 

C. Period Measurement With Heterodyning 

Suppose that (p(t) is a monotonic function of time. 
The output of the filter of Section VII-A (43) becomes 

v’(t) =7 
vo, vo - cos $0(l) 2 (51) 

if ) [c (t)/V,] 1 < 1. Then one may measure the period 
Y of two successive positive zero crossings of u’(t) . Thus 

1 
- = yo lg.1 T 

and for the Mth positive croesover 

M 
- = “0 IlkI. 
7 

The magnitude bars appear because COB 9 (t) is an even 
function of r(t). It is impossible to determine by this 
method alone whether p is increasing with time or de- 
creasing with time. Since &, may be very small (-lO-ll 
or IO-l* for very good oscillators), T may be quite long 
and thus measurable with a good relative precision. 

If the phaee c(t) is not monotonic, the true @. may be 
near eero but one could still have many seros of cos 7 (t) 
and thus (52) and (53) would not be valid. 

D. Frequency Counters 

Aesume the phase (either 4i or (p) is a montonic func- 
tion of time. If one counts the number M of positive going 
zero crossings in a period of time T ,  then the average fre- 
quency of the signal is M/z. If we assume that the signal 
is V(t) as defined in (2)) then 

f = vot1 + A). 

If we aseume that the signal is u’(t) as defined in (43), 
then 

M - T = “0 1li.l. 

Again, one measures only positive frequencies. 

E. Frequency Diwriminators 
A frequency disc riminator is a device that converts 

frequency fluctuations into an analog voltage by means 
of a dispemive element. For example, by slightly detuning 
a resonant circuit from the signal V(t) the frequency 
fluctuationa (1/2r)]+(t) are converted to amplitude fluc- 
tuations of the output signal. Provided the input amplitude 
fluctuations [c(f))/Vo are insignilicant, the output ampli- 
tude fluctuations can be a good measure of the frequency 
fluctuations. Obviously, more sophisticated frequency 
discriminatora exist (e.g., the c&urn beam). 
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From the analog voltage one may use analog spectrum 
analyzers to determine S,(j), the frequency stability. By 
converting to digital data, other analyses are possible 
on a computer. 

F. Common Hazarda 

1) Errors Caused by Signal-Processing Equipment: The 
intent of most frequency stability measurements is to 
evaluate the source and not the measuring equipment. 
Thus, one must know the performance of the measuring 
system. Of obvious importance are such aspects of the 
measuring equipment as noise level, dynamic range, 
resolution (dead time), and frequency range. 

It has been pointed out that the noise bandwidth iA is 
very essential for the mathematical convergence of certain 
expressions. Insofar as one wants to measure the signal 
source, one must know that the measuring system is not 
limiting the frequency response. At the very least, one 
must recognize that the frequency limit of the measuring 
system may be a very important, implicit parameter for 
either u:(t) or S.0). Indeed, one must account for any 
deviations of the measuring system form ideality such as 
a “nonflat” frequency response of the spectrum analyzer 
itself. 

Almost any electronic circuit that processes a signal 
will, to some extent, convert amplitude fluctuations at the 
input terminals into phase fluctuations at the output. 
Thus, AM noise at the input will cause a time-varying 
phase (or FM noise) at the output. This can impose im- 
portant constraints on limiters and automatic gain control 
(AGC) circuits when good frequency stability is needed. 
Similarly, this imposes constraints on equipment used for 
frequency stability measurements. 

9) Analog Spectrum Analyzers (Frequency Domain) : 
Typical analog spectrum analyzers are very similar in 
design to radio receivers of the superheterodyne type, and 
thus certain design features are quite similar. For exam- 
ple, image rejection (related to predetection bandwidth) 
is very important. Similarly, the actual shape of the 
analyzer’s frequency window is important since this af- 
fects spectral resolution. As with receivers, dynamic 
range can be critical for the analysis of weak signals in 
the presence of substantial power in relatively narrow 
bandwidths (e.g., 60 Hz). 

The slewing rate of the analyzer must be consistent 
with the analyzer’s frequency window and the post-detec- 
tion bandwidth. If one has a frequency window of 1 Hz, 
one cannot reliably estimate the intensity of a bright 
line unless the slewing rate is much slower than 1 He/s. 
Additional post-detection filtering will further reduce the 
maximum usable slewing rate. 

3) Spectral Density Estimation from Time Domain 
Data: It is beyond the scope of this paper to present a 
comprehensive list of hazards for spectral density estima- 
tion; one should consult the literature [2]-[5]. There 

115 

are a few points, however, which are worthy of special 
notice: a) data aliasing (similar to predetection band- 
width problems) ; b) spectral resolution; and c) con- 
fidence of the estimate. 

4) Variances of Frequmcy Fllcctvotions U:(T): It is not 
uncommon to have disorete frequency modulation of m 
source such as that asaociati with the power supply 
frequencies. The existence of discrete frequencies in S,(j) 
can cause U:(T) to be a very rapidly changing function 
of r. An interesting situation results when T is an exact 
multiple of the period of the modulation frequency (e.g., 
one makes z = 1 s and there exists 13043s frequency 
modulation on the signal). In this situation, ut(r = 1 I)) 
can be very optimistic relative to values with slightly 
tierent values of 7. 

One also must be concerned with the convergence 
properties of u:(7) since not all noise proom will have 
finite limits to the estimates of U:(T) (see Appendix I). 
One must be as critically aware of any “dead time” in the 
measurement process as of the system bandwidth. 

6) Signd Sozcrce and Loading: In measuring frequency 
stability one should specify the exact location in the 
circuit from which the signal is obtained and the nature 
of the load used. It is obvious that the transfer character- 
istics of the device being specified will depend on the load 
and that the measured frequency stability might be 
a&cted. If the load itself is not constant during the 
measurements, one expects large effects on frequency 
stability. 

6) Cenjide~ of th.s Estimate: Ae with any measurement 
in soienee, one wants to know the confidence to sssign to 
numerical results. Thus, when one measures S,(f) or &), 
it is important to know the aoeuraeies of these estimates. 

a) The Allan Varianu: It is apparent that a single 
sample variance 4(&r, r) does not have good confidence, 
but, by averaging many independent samples, one can 
improve the accuracy of the estimate greatly. There is a 
key point in this statement, “independent samples.” For 
this argument to be true, it is important that one sample 
variance be independent of the next. Smce 42, 7, T) is 
dated to the first Merence of the frequency (ll), 
it is sufficient that the noise perturbing y(t) have “ind+ 
pendent increments,” i.e., that y(t) be a random walk. 
In other words, it is su5cient that S,o) - f-’ for low 
frequencies. One can show that for noise processes that 
are more divergent at low frequencies than f”, it is 
difiicult (or impossible) to gain good confidence on 
estimat..ea of O’,(T). For noise procegses that are less 
divergent than f-‘, no problem exists. 

It is worth noting that if we were interested in 
u;:(Jv = CD, r, T), then the limit noise would become 
S,(j) N f instead of j” as it is for 42, 2, 7). Smce most 
real signal generators possess low-frequency divergent 
noises, (ui(2, r, T)) is more useful than g:(N = =, 7, d. 

Although the aample variances 42, r, T) will not be 
normally distributed, the variance of the average of m 
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independent (nonoverlapping) samples of 4(2, Z, r) 
(i.e., the variance of the Allan variance) will decrease as 
l/m provided the conditions on low-frequency divergence 
are met. For sufl’iciently large m, the distribution of the 
m sample averages of 4(2, 7, I) will tend toward normal 
(central Iimit theorem). It is thus possible to estimate 
confidence intervals based on the normal distribution. 

As always, one may be interested in 7 values approach- 
ing the limits of available data. Clearly, when one is 
interested in 7 values of the order of a year, one is severely 
limited in the aim of m, the number of samples of 4(2,7,7). 
Unforhmately, there seems to be no substitute for many 
samples and one extends 7 at the expense of confidence in 
the results. “Truth in packagi&’ dictates that the sample 
sisembestatedwiththereaulta. 

b) Spectral Lhkty: As before, one is referred fo the 
literature for discussions of spectrum estimation [2]-(51. 
It is worth pointing out, however, that for S,(j) there are 
basically two different typea of averaging that can be 
employed: sample averaging of independent estimates 
of S.(j), and frequency averaging where the resolution 
bandwidth is made much greater than the reciprocal data 
length. 

VIII. Ch0Luf310N8 
A good measure of frequency stability is the spectral 

density S,(j) of fractional frequency fluctuations y(t). 
An alternative is the expected variance of N sample 
weragea of y(l) taken over a duration 7. With the begin- 
ning of dve sample periods spaced every T unite 
of time, the variance is denoted by &V, T, 7). The 
&ability measure, then, is the expected value of many 
measurements of d(N, T, 7) with N - 2 and T = 7; 

that is, U:(T). For all real experiments one hss a 6nite 
bandwidth. In general, the time domain measure of 
frequency stability ~37) is dependent on the noise band- 
width of the system. Thus, there are four important 
parameters to the time domain measure of frequency 
stability. 

N Number of sample averagea (N - 2 for preferred 
ma). 

T Repetition time for auccekve sample averagea 
(T = T for preferred measure). 

T Duration of each sample average. 
j, System noise bandwidth. 

Translations among the various stability messures for 
common noise types are possible, but there are significant 
reasons for choosing N = 2 and T = 7 for the preferred 
measure of frequency stability in the time domain. This 
measure, the Allan variance, (N = 2) has been referenced 
by [12], [20]-[221 and more. 

Although S,(j) appears to be a function of the single 
v&d,de f, actual experimental estimation procedures 
for the spectral density involve a great many parameters. 
Indeed, its experimental estimation can be at least as 
involved as the estimation of U:(T). 

APPENDIX I 
We want to derive (23) in the text. Starting from (10 

we have 

where (9) has been used. Now 

b(t’)u(t”)> = R,(l’ - ,“) (57) 

where R,(r) is the autocorrelation function of a,(t) and 
is the Fourier transform of 4(j), the power spectral 
density of y(t). Equation (57) is true provided that 
y(t) is stationary (at least in the wide or covariance 
sense), and that the average exists. If we assume the 
power spectral density of v(t) , 4(j) has low and high 
frequency cutoffs jr and ja (if necessary) so that 

/ - S.(l) 4 0 

exists, then if y is a random variable, the average does 
exist and we may safely assume stationarity. 

In practice, the high-frequency cutoff jr is always 
present either in the device being measured or in the 
measuring equipment itself. When the high-frequency 
cutoff is necessary for convergence of integrals of 4(j) 
(or is too low in frequency), the stability measure will 
depend on jr. The latter case can occur when the measur- 
ing equipment is too narrow-band. In fact, a useful 
type of spectral analysis may be done by varying jk 
purposefully [ 181. 

The low-frequency cutoff jr may be taken to be much 
smaller than the reciprocal of the longest time of inter- 
est. The results of calculations as well as measurements 
will be meaningful if they are independent of jl as jl 
approaches sero. The range of exponents in power law 
spectral densities for which this is true will be discussed 
and are given in Fig. 1. 

To continue, the derivation requires the Fourier trans- 
form relationships between the autocorrelation function 
and the power spectral density 

S,(j) = 4 s,- R,(7) cos 2rfr dr 

R,(7) = J,- s”(j) co8 !brfr df. 

Using (58) and (57) in (56) gives 

(58) 
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.I 
1.). 

dl’ CQS 2rf(l’ - t”) - 
1. 

- cos 2rj[T(j - i) + T] - cos 2*f[T(j - i) - f]) . 

(59) 
(The interchanges in order of integration are permissible 
here since the integrals are uniformly convergent with 
the given restrictions on S,(f) .) The first summation in 
the curly brackets is independent of the summation in- 
dex n and thus gives just 

The kernel in the second term in the curly brackets 
may be further simplified 

2 cos 2*fT(j - i) - cos hf(T(j - i) + T) 

- cos 2*f(T(j - i) - T) = 4 sin’ *f+ cos 2*fT(j - ~3. 
(61) 

The second term is then 

(The interchange of summation and integration is justi- 
fied.) We must now do the double sum. Let 

i- i=k 

2rjT = z. @a 

Changing summation indices from i and j to i and k 
gives for the sum 

The region of summation over the discrete variables i 
and k is shown in Fig. 5 for N = 4. 

The summand is independent of i so that one may inter- 
change the order of summation and sum over i first. 
The summand is even in k and the contributions for 
k c 0 are equal to those for k > 0, and so we may pull 
out the term for k = 0 separately and write 

S = 2 

= 2 Nz (N - k) cos kt) + N. (65) m 

+b 0 0 0 0 0 0 0 0 0 0 0 0 + 3 
2 

1 0 

-I 

-2 

30 $6, 0 0 $6, 0 0 0 0 0 0 0 0 

0 ‘. 0 ‘. 

20 :O a\,0 :O a\,0 0 0 0 0 0 0 
I I '\ ‘\ 

' ‘0 0 O’\ '0 O'\ 0 0 0 0 0 0 0 
‘\ '\ 

L A _ _ L A _ _ 

0 'i 2 3 A; ‘i 2 3 -?t -?t 6 6 L L 

-IO 0“y 0 O“',~ Q 0; 0; A; 0 0 0 0 
1 1 

‘. '. I I 
-a0 0 0 ‘.O 0 0 ‘.O 0: 0: 0 0 0 0 

*\ *\ 

341 0 0 0 *, 0 0 0 *, *p,, : *p,, : 0 0 0 0 

-4 

P 

0 0 0 0 0 0 

Fig. 6. Region of summation for i and k for N = 4. 

This may be written as 

S-N+2Re[N-~f-]~c”’ (66) 

where Re[ U] means the real part of U and d/& 
is the differential operator. The series is a simple geo- 
metric series and may be summed easily, giving 

Combining everything we get, after some rearrangement, 

b:(N, T, 4) 

N 
=N-lo I - df S,<n ‘@ [l-&y 

where r = T/r. This is the result given in (23). 
We can determine a number of thiigs very easily 

this equation. Fit let us change variables. Let *f~ 
then 

from 
= UL, 

Thekernelbehaveslikeu’asu-,Oandlikeu-’sau-, 0. 
Therefore (o’:(N, T, T)) ia convergent for power law 
spectral densities, S,y) = h.f”, without any low- or high- 
frequency cutoffs for -3 < a < 1. Using (69) for power 
law spectral densities we find 

(u:(N, T, 7)) = I-~-%.C,, , -3<a<l 

= r’h,C,, fi=-a-l 
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and 

m 
This is the basis for the plot in Fig. 1 in the text of P 
versus a. For a 1 1 we must include the high-frequency 
cutoff j,. 

For N = 2 and r = 1 the results are particularly sim- 
ple. We have 

(42, 7,7)) = t--‘h. --$ 
J 

m  

du ua-’ sin4 u (71) 
* 0 

for power law spectral densities. For N = 2 and gen- 
eral r we get 

6732, T, 7)) 

(72) 

The first form in (72) is particularly simple and is also 
useful for r = 1 in place of (71). 

Let us discuss the case for o 2 1 in a little more de- 
tail. As mentioned above we must include the high-fre- 
quency cutoff jh for convergence. The general behavior 
can be seen most easily from (68). After placing the 
factor T-~ outside the integral and combining the factor 
j4 with S,,(j) we find that the remaining part of the 
kernel consistl of some constants and some oscillatory 
terms. If 2*fn+ S 1 it is apparent that the rapidly oscil- 
lating terms contribute very little to the integral. Most 
of the contribution comes from the integral over the 
constant term causing the major portion of the T de- 
pendence to be the r-* factor outside the integral. This is 
the reason for the vertical slope at c = -2 in the 
c versus o plot in Fig. 1 in the text. 

One other point deserves some mention. The constant 
term of the kernel discussed in the preceding paragraph 
is different for r = 1 from the value for r Z 1. This is 
readily seen from (72) for N = 2 ; for r = 1 the constant. 
term is 3/2 while for r Z 1 it is 1. This is the reason 
for &(r - l), which appears in some of the resulte of 
Appendix II. In practice, &(r - 1) does not have zero 
width but is smeared out over a width of approximately 
(2*jrr)-l. If there must be dead time r # 1, it is wise to 

. choose (r - 1) >> (2wjlr)-l or (r - 1) < (2~j~r)-~ but 
with &jr+ >> 1. In the latter case, one may assume 
r=: 1. 

APPESDLX II 

Let y(f) be a sample function of a random noise pro- 
cess Cth a spect,ral density S’,(j). The function y!t) is 
assumed to be pure real and S,(j) is a one-sided spectrai 
density relative to a cycle frequency (i.e., the dimensions 
of S,(j) are that of y2 per hertz). (For additional infor- 
mation see Appendix I, [7], [8], [ 181.) 

Let z(t) be defined by the equation 

dx 
k(f) = z = y(f). (73) 

Define the following. to is arbitrary instant of time and 

t -+I - t. + T, 12 = 0, 1,2, *** , (74) 

1 8. - - y(t) dt = z(t. + 7) - z(L) 

7 7 
cl3 

(76) 

and let fb be a high-frequency cutoff (infinitely sharp) 
with %jfns >> 1. 

t&N, T, 7)) = (& 2 (9. - (g,.v)‘>- (77) n-1 

Special Case: 

(42, T, T)) = p ; ‘l)‘). (78) 

Special Ca8e: 

Z(7) - m, 7, 7)) 

= [&n + 27) - 22(1, + 7) + t(tn)]2 

2rz > 

. 
(79) 

Definition: 

m4 - MO + 24 - 2&O + 7) + t(tJ]*). (80) 

Cm- of Definitiona: 

D:(r) = 2rt:(r) = 201(r). w 

Definitiun: 

+:(T, 7) * ([z(to + T + I) - z(to + T) 

- 40 + 7) + z(to)]‘). (82) 

Consequence of Definitions: 

ib:L:(T, 4 = 27*W2, T, 4). 

Special Case: 

(83) 

Random Walk y 

s,(j) = y ( S.(fl = &+ 1 
T 

r=---, 
7 

0 I f I fh * 



Quuntity Relation (Lf(T, 4 ho. ITI, r/l 

(4W, h-Z.- , r 1. I’, 4) [r(X ha.T, 5 (l(m + 1) - 11, r21 

(85) Flicker 1: 

f&V, T, 4) h-z- t= 1 (W 

u:(T) 
r = T/r, 27rj*T >> 1, Prj,T >> 1, 0 I f I fh. 

h-,.&&id , N = 2,r = 1 (87) ” 

Dz(r) = 2$(4 h-2.2(2r; II” 
Quantity 

@) (r&V, T, I)) 

&CT, 7) he2.(= (a2 - l), 
6 

r>l 

r I 1 . (59) 

Flicker y 
(d(.V? 7, 7)) 

S"(j) = hT (S.(j) = -%) 
(24 f 

Quantity 

r = T/T, 0 5 f 5 fb * 
44 

Relation 

D:(r) = 2u3(r) 

. [ --2(nr)* In (nr) + (nr + 1)’ III (nr + 1) 

+ (nt - l)? ln In7 - 1 I] (go) CW. 4 

(u:(N, 7, .z), 
N In N 

h-,-F -1 1 
(r = 1) (91) 

d(d h-,.2 In 2, (N = 2, r = 1) (92) 

D:(T) = S:(T) h-,.47* In 2 (93) 

312 + ln (2arjhd1 - In 2 , 

r=l (105) * * 

hq$ [2 + In (WJ)], r<<l. 
h- , r’[ - ‘9’ In r + (r + 1)’ In (r + 1) 

+ (r - l)* In Ir - 111 (94) 
White x 

-h-, 2r2(2 + In r), r >> 1 S,(f) = hJ* S.(f, = $3 > 

Relation 

r= 1 (102)* * 

h,. ’ 
424* 

3[2 + In (‘%rjl~)] - ln 2 , 

N = 2,r = 1 (103) * * 

h.2 3[2 + In (%rjk7)] - In 2 (104) * * 

r >> 1 

wh-,*2T2(2 - ln r), r<<l. (95) * 1, ifr-1 
While y (Random Walk z) 

r = T/r; &(r - 1) = 
0, otherwise 

WI = ho ??fjh7 >> 1, 0 I f 5 fn * 

r = T/s, 0 5 f 5 t * 
Quantity Relataon 

Quantity Relation (&V, T, 7)) h/ +N;$;)2- ‘)f$ ww 

btW, T, 4) $. lC1, rll 
(4~9 7, 7)) 

h .-c’ + 1 2fh 
2ggyyT’ r=l (107) 

h,.&r(N + 1) 171-l, Nr 5 1 (96) 

ho 
47) 

M.~, 7, 4, F' ITI--'* r=l WI 
hq& , iv = 2,r = 1 (108) 

44 
h, 

D:(T) (10% 

~W* .V = 2,r = 1 (98) 
= 2u:(r) h,.$ 

md = 20:(r) h,.IrI 
(gg) rL:(T, 4 h,. [‘2 + &(r - l)] 2f,l 

(ST) (110) 

8 See Appendix Note # 21 88 See Appendix Note # 22 
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Reprinted, with permission, from Report 580 of the International Radio Consultative 
Committee (C.C.I.R.), pp. 142-150, 1986. 

CHARACTERlZARON OF FREQUENCY AND PHASE NOISE 

(Study Programme 3B/7) 

(1974-1978-1986) 

1. 1ntroductioa 

Techniques to characterize and to measure the frequency and phase instabilities in frequency generators 
and received radio signals are of fundamental importance to users of frequency and time standards. 

In 1964 a subcommittee on frequency stability was formed, within the Institute of Electrical and Electronic 
Engineers (IEEE) Standards Committee 14 and later (in 1966) in the Technical Committee on Frequency and 
Time within the Society of Instrumentation and Measurement (SIM), to prepare an IEEE standard on frequency 
stability. In 1969, this subcommittee completed a document proposing definitions for measures on frequency and 
phase stabilities. These recommended measures of stabilities in frequency generators have gained general 
acceptance among frequency and time users throughout the world. Some of the major manufacturers now specify 
stability characteristics of their standards in terms of these recommended measures. 

Models of the instabilities may include both stationary and non-stationary random processes as well as 
systematic processes. Concerning the apparently random processes, considerable progress has been made 
[IEEE-NASA, 1964; IEEE, 19721 in characterizing these processes with reasonable statistical models. In contrast, 
the presence of systematic changes of frequencies such as drifts should not bg modelled statistically, but should be 
described in some reasonable analytic way as measured with respect to an adequate reference standard, e.g., linear 
regression to determine a model for linear frequency drift. The separation between systematic and random parts 
however is not always easy or obvious. The systematic effects generally become predominant in the long term, and 
thus it is extremely important to specify them in order to give a full characterization of a signal’s stability. This 
Report presents some methods of characterizing the random processes and some important types of systematic 
processes. 

Since then, additional significant work has been accomplished. For example, Baugh [1971] illustrated the 
properties of the Hadamard variance - a time-domain method of estimating discrete frequency modulation 
sidebands - particularly appropriate for Fourier frequencies less than about 10 Hz; a mathematical analysis of 
this technique has been made by Sauvage and Rutman (19731; Rutman [1972] has suggested some alternative 
time-domain measures while still giving general support to the subcommittee’s recommendations; De Prins cf al. 
(19691 and De Prins and Comelissen. [1971] have proposed alternatives for the measure of frequency stability in 
the frequency domain with specific emphasis on sample averages of discrete spectra. A National Bureau of 
Standards Monograph ,devotes Chapter 8 to the “Statistics of time and frequency data analysis” [Blair, 19743. This 
chapter contains some measurement methods, and applications of both frquencydomain and time-domain 
measures of frequency/phase instabilities. It also describes methods of conversion among various time-domain 
measures of frequency stability, as well as conversion relationships from frequency-domain measures to time- 
domain measures and vice versa. The effect of a finite number of measurements on the accuracy with which the 
two-sample variance is determined has been specified [Lesage and Audoin, 1973, 1974 and 1976; 
Yoshimura, 1978). Box-Jenkins-type models have been applied for the interpretation of frequency stability 
measurements [Barnes, 1976; Percival, 19761 and reviewed by Winkler 11976). 

Lindsey and Chie [1976] have generalized the r.m.s. fractional frequency deviation and the two-sample 
variance in the sense of providing a larger class of time-domain oscillator stability measures. They have developed 
measures which characterize the random time-domain phase stability and the frequency stability of an oscillator’s 
signal by the use of Kolmogorov structure functions. These measures are connected to the frequency-domain 
stability measure S,,(fi via the Mellin transform. In this theory, polynominal type drifts are included and some 
theoretical convergence problems due to power-law type spectra are alleviated. They also show the close 
relationship of these measures to the r.m.s. fractional deviation [Cutler and Searle, 1966) and to the two-sample 
variance [Allan, 19661. And finally, they show that other members from the set of stability measures developed are 
important in specifying performance and writing system specifications for applications such as radar, communica- 
tions, and tracking system engineering work. 

Other forms of limited sample variances have been discussed [Baugh, 1971; Lesage and Audoin, 1975; 
Boileau and Picinbono. 19761 and a review of the classical and new approaches has been published 
[Rutman, 1978). 

* See Appendix Note # 23 TN-162 
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Frequency and phase instabilities may be characterized by random processes that can be represented 
statistically in either the Fourier frequency domain or in the time domain [Blackman and Tukey, 19591. The 
instantaneous, normalized frequency departure y(r) from the nominal frequency vs is related to the instantaneous- 
phase fluctuation p(r) about the nominal phase 21~0 I by: 

1 WO 
y(r) - znv - do 

o dr - g 
(1) 

x(r) - g 

0 

where x(r) is the phase variation expressed in units of time. 

2. Fourier frqoency domaiu 

In the Fourier frequency domain, frequency stability may be defined by several one-sided (the Fourier 
frequency ranges from 0 to w) spectral densities such as: . 

W3 of y(r). &<A of cp(0, WI of &r), &tfl of x(r), etc. 

These spectral densities are related by the equations: 

(4) 

Power-law spectral densities are often employed as reasonable models of the random rtuctuations in 
precision oscillators. In practice, it. has been recognized that these random fluctuations are the sum of five 
independent noise processes and he&e: 

+2 
z h,f’ for 0 < / -C fA 

a=-2 
(9 

0 for / > fh 

where &‘s are constants, a’s are integers, and fh is the high frequency cut-off of a low pass filter. Equations (2), 
(3) and (4) are correct and consistent for stationary noises including phase noise. High frequency divergence is 
eliminated by the restrictions on f in equation (5). The identification and characterization of the five noise 
processes are given in Table I, and shown in Fig. 1. In practice, only two or three noise processes are sufficient to 
describe the random frequency fluctuations in a specific oscillator; the others may be neglected. 

3. Timedomaiu 

Random frequency instability in the time-domain may be defined by several sample variances. The 
recommended measure is the two-sample standard deviation which is the sottare root of the two-sample zero 
dead-time variance av2(r) [van Neumann cr al., 1941; Allan, 1966; Barnes l r ai, 19711 defined as: - 

u)?(t) = ( 
<Jj +,-&I 

2 > 
where 

I 
. I 

‘k + t 
4 =; 

‘k 

y(r) dr = xk+tz -5 

(6) 

and rk + , = $ + r (adjacent samples) 

< > denotes an infinite time average. The xk and xk+t are time residual measurements made at r& and 
r&+1 I r& + T, k = 0, 1, 2, . . ., and 11~ is the fixed sampling rate which gives zero dead time between frequency 
measurements. By “residual” it is understood that the known systematic effects have been removed. 
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If the initial sampling rate is specified as l/x0, then it has been shown [Howe cr al, 19811 that in geneA 
one may obtain a more efficient estimate of u,.(r) using what is called “overlapping estimates”. This estimate is 
obtained by computing equation (7). 

1 
N-lm 

0; CT) * 
2(N - 

(7) 

where N is the number of original time departure measurements spaced by Q,, (N I M + 1, where M is the 
number of original frequency measurements of sample time, ~0) and r = mre. The corresponding confidence 
intervals [Howe et al., 19811, discussed in Q 6, are smaller than those obtained by using equation (12). and the 
estimate is still unbiased. 

If dead time exists between the frequency departure measurements and this is ignored in computing 
equation (a), it has been shown that the resulting stability values (which are no longer the Allan variances), will be 
biased (except for the white frequency noise) as the frequency measurements are regrouped to estimate the stability 
for mro (m > 1). This bias has been studied and some tables for its correction published [Barnes, 1969; 
Lesage, 1983). 

A plot of au(r) versus r for a frequency standard typically shows a behaviour consisting of elements as 
shown in Fig. 1. The first part, with cry(r) - T-“~ (white frequency noise) and/or a,(r) - T-I (white or flicker 
phase noise) reflects the fundamental noise properties of the standard. In the case where a,.(r) - r-i, it is not 
practical to decide whether the oscillator is perturbed by white phase noise or by flicker phase noise. Alternative 
techniques are suggested below. This is a limitation of the usefulness of U,(T) when one wishes to study the nature 
of the existing noise sources in the oscillator. A frequency-domain analysis is typically more adequate for Fourier 
frequencies greater than about 1 Hz. This T-I and/or T- I’* law continues with increasing averaging time until the 
so-called flicker “floor” is reached, where Us is independent of the averaging time T. This behaviour is found in 
almost all frequency standards; it depends on the particular frequency standard and is not fully understood in its 
physical basis. Examples of probable causes for the flicker “floor” arc power supply voltage fluctuations, magnetic 
field fluctuations, changes in components of the standard, and microwave power changes. Finally the curve shows 
a deterioration of the stability with increasing averaging time. This occurs typically at times ranging from hours to 
days, depending on the particular kind of standard. 

A “modified Allan variance”, MOD U:(T), has been -developed [Allan and Barnes, 19811 which has the 
property of yielding different dependences on T for white phase noise and flicker phase noise. ‘The dependences 
for MOD U,.(T) are T-~'* and T-' respectively. The relationships between cry(r) and MOD U,(T) are also explained 
in [Allan and Barnes, 1981; IEEE 1983. Lesage and Ayi, 19841. MOD U,(T) is estimated using the following 
equation: 

MOD a; (T) - 
1 

‘-:+I [ “5’ (Xi+zm - 2Xi+n + Xi)] 
2$m*(N- 3m + 1) j-, i-j 

(8) 

where N is the original number of time measurements spaced by TO, and T = mro the sample time of choice. 
Properties and confidence of the estimate are discussed in Lesage and Ayi 119841. Jones and Xyon (19831 and 
Barnes er al. [1982] have developed maximum likelihood methods of estimating U,,(T) for the specific models of 
white frequency noise and random walk frequency noise, which has been shown to be a good model for 
observation times longer than a few seconds for caesium beam standards. 

4. Conversion between frequeocy aod time domains 

In general, if the spectral density of the normalized frequency fluctuations S,(j) is known, the two-sample 
variance can be computed [Barnes et al., 1971; Rutman, 1972): 

fh 

U,‘(T) = 2 ’ (‘I (ltT/)2 

sin4nT/ dJ 
(9) 
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FIGURE 1 - Slope chamcten’stics of the five independent noise pmcesses 

(log scale) 

Specifically, for the power law model given by equation (5). the time-domain measure also follows the 
power law as derived by Cutler from equations (5) and (9). 

w U,‘(T) - h-2 - r+h-,2log.2+h,~+h, 
1.038 + 3 10&(2xh T) 

6 (2x)2 T2 
+&L 

(2n)Z T2 
(10) 

Note. - The factor 1.038 in the fourth term of equation (10) is different from the value given in most previous 
publications. 
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The values of h, are characteristics of oscillator frequency noise. One may note for integer values (as often 
seems to be the case) that )r - -a - I, for - 3 5 a S 1, and u = - 2 for a Z 1 where cr: (T) - r@. 

These conversions have been verified experimentally [Brandenberger et al., 19711 and by computation 
[Chi, 19771. Table II gives the coefficients of the translation among the frequency stability measures from time 
domain to frequency domain and from frequency domain to time domain. 

The slope characteristics of the five independent noise processes are plotted in the frequency and time 
domains in Fig. 1 (log log scale). 

5. Measurement techniques 

The spectral density of phase fluctuations S,(fi may be approximately measured using a phase-locked 
loop and a low frequency wave analyzer [Meyer, 1970; Walls et al., 19761. A double-balanced mixer is used as the 
phase detector in a lightly coupled phase lock loop. The measuring system uses available state-of-the-art electronic 
components; also a very high quality oscillator is used as the reference. For very low Fourier frequencies (well 
below 1 Hz), digital techniques have been used [Atkinson er al., 1963; De Prins ef al., 1969; Babitch and 
Oliverio, 19741. New methods of measuring time (phase) and frequency stabilities have been introduced with 
picosecond time precision [Allan and Daams, 19751, and of measuring the Fourier frequencies of phase noise with 
30 dB more sensitivity than the previous state of the art [Walls er al., 19761. 

Several measurement systems using frequency counters have been used to determine time-domain stability 
with or without measurement dead time [Allan. 1974; Allan and Daams, 19751. A system without any counter has 

’ also been developed [Rutman, 1974; Rutman and Sauvage, 19741. Frequency measurements without dead time can 
be made by sampling time intervals instead of measuring frequency directly. Problems encountered when dead 
time exists between adjacent frequency measurements have also been discussed and solutions recommended 
[Blair, 1974; Allan and Daams, 1975; Ricci and Peregrine, 19761. Discrete spectra have been measured by 
Groslambert ef al. [1974]. 

6. Confidence limits of time domain measurements 

A method of data acquisition is to measure time variations xi at intervals 10. Then u,(r) can be estimated 
for any r = nro (n is any positive integer) since one may use those 3 values for which i is equal to nk. An 
estimate for a,(r) can be made from a data set with M measurements of Jrj as follows: 

or equivalent 

% (7)s I .&y;: (xj+2-2xj+l + 9) 
2 1/2 
1 

(11) 

(12) 

Thus, one can ascertain the dependence of or(r) as a function of T from a single data set in a very simple way. 
For a given data set, M of course decreases as n increases. 

To estimate the confidence interval or error bar for a Gaussian type of noise of a particular value cry(r) 
obtained from a finite number of samples [Lesage and Audoin, 19731 have shown that: 

Confidence Interval I, = u,(r) . & . M-“2 for M > 10 (13) 

where: 

M: total number of data points used in the estimate, 

a: as defined in the previous section, 

K2 = ICI = 0.99, 

ICY = 0.87. 

K-I - 0.77, 

K-2 = 0.75. 
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Uy(T - 
As an example of the Gaussian model with M - 100, a - - 1 (flicker frequency 
1 second) - 10-12, one may write: 

& pI u,(r) * I& ’ M-“’ - u,(r) * (0.77) * (100)-“2 - U,(l) * (0.077), 

noise) and 

which gives: 

fJ,o - 1 second) - (1 f 0.08) x lo-” 

(14) 

(19 

A modified estimation procedure including dead-time between pairs of measurements has also been 
developed [Yoshimura, 19781, showing the influence of frequency fluctuations auto-correlation. 

7. Conclusion 

The statistical methods for describing frequency and phase instability and the corresponding power law 
spectral density model described are sufficient for describing oscillator instability on the short term. Equation (9) 
shows that the spectral density can be unambiguously transformed into the time-domain measure. The converse is 
not true in all cases but is true for the power law spectra often used to model precision oscillators. 

Non-random variations are not covered by the model described. These can be either periodic or 
monotonic. Periodic variations are to be analyzed by means of known methods of harmonic analysis. Monotonic 
variations are described by linear or higher order drift terms. 

TABLE I - 7hrfinctional characteristics offive independent noise processes 
for frcquenqv instability of oscillators 

Description of noise process 
lime-domaine 

Flicker phase 1 -1 -2 -I 

White phase 2 0 -2 -1 
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TABLE II - Translation o/fequency stability measures from spectral densities in 
frequency domain to variance in time domain and vice versa ($or 2r1&r > I) 

Description of noise process 

Random walk frequency 

Flicker frequency 

White frequency 

Flicker phase 

White phase 

D _ 1.038 + 3 IO& (2njhT) 

4ns 

B- 2lO&2 

c- l/2 
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Characterization and measurement of time and frequency stability * 

P, Lesage and C. A udoin 

Laboraroire de I’Horloge Alomiquc. Equipe de Recherche du CNRS, Universiti Paris-&d, Orsay, France 

(Reccivcd February I. 1979.) 

The roles which spectral density of fractional frequency fluctuations, two-sample varimcc. and 
power spectra play in different parts of the electromagnetic spectrum are introduced. Their relationship 
is diicussed. Data acquisition in the frequency and the time domain is considered, and examples 
arc Riven throughout the spectrum. Recently proposed methods for the characterization of a single 
hi&quality frequency source are briefly described. Possible difficulties and limitations in the 
interpretation of measurement results are specified. mostly in the prcsencc of a dead time between 
mcasuremcnts. The link between past developments in the field, such = two-sample v-cc and 
spectral analysis from time domain measurement, and recently introduced structure functions is 
emphasized. 

I. INTRODUCTION v(r) = [V, + Ai’( ~0s [2m,r + q(f)] (1) 

Progress in the characterization of tune and 
frequency stability has been initiated owing to the 
work of the various authors of papers delivered 
at the IEEE-NASA Symposium on Short Term 
Frequency Stability [ 19641 and of articles published 
in a special issue of the Proceedings of the IEEE 
[1966]. Presently widespread definitions of fre- 
quency stability have been given by Barnes et al. 
[ 19711. Many of the most important articles on 
the subject of time and frequency have been gath- 
ered in the NBS Monograph 140 [ 19741. Since that 
time, many papers have been published which 
outline different aspects of the field. Owing to the 
extent of the subject, they will be only partly 
reviewed here. We will emphasize recently 
proposed principles of measurements and recent 
developments in the time domain characterization. 
of frequency stability. The subject of time predici’ 
tion and modeling as well as its use for estimation 
of the spectrum of frequency fluctuations [Percival, 
19781 are beyond the scope of this paper. Recent 
reviews which outline several different aspects of 
the field of time and frequency characterization 
have been published [Barnes, 1976; Winkler, 1976; 
Barnes, 1977; Rutman, 1978; Kartaschoff, 1978). 

where V, and Y,, are constants which represent the 
nominal amplitude and frequency, respectively. 
AY(t) and q(t) denote time-dependent voltage and 
phase variations. 

Fractional amplitude fluctuations are defmed by 

E(I) = AV(r)/ F’, (2) 

A power spectral density of fractional amplitude 
fluctuations S.cf) can be introduced if amplitude 
fluctuations are random and stationary in the wide 
sense. Usually, for highquality frequency sources, 
one has 

b(t)1 Q: 1 (3) 

and amplitude fluctuations are neglected. However, 
it is known that amplitude fluctuations can be 
converted into phase fluctuations in electronic cir- 
cuits used for frequency metrology [Barillet and 
Audoin, 1976; Bava et al., 1977a] and that they 
may perturb measurement of phase fluctuations 
[ Brendel et al., 19771. It is then likely that amplitude 
fluctuations will become the subject of more de- 
tailed analysis in the future. 

According to the conventional deftition of in- 
stantaneous frequency we have 

4) = “0 + (1 /Wcb(~) (4) 
2. DEFINITIONS: MODEL OF FREQUENCY 

FLUCTUATlONS In a stable frequency generator the condition 

The instantaneous output voltage of a frequency Icb0)l/2~~0 * 1 (5) 
generator can be written as is generally satisfied. 

copyri& 0 1979 by lbe Amelia0 Geopbysicd lloicm. We will use the following notations [Barnes et 

* See Appendix Note # 24 521 
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ul., 19711: 

90) 
x(r) = - 

i(r) 

Znv, 
and y(l) = - 

Znv, 
(6) 

where x(f) and y(t) are the fractional phase and 
frequency fluctuations, respectively. The quantity 
x(t) represents the fluctuation in the time defined 
by the generator considered as a clock. 

At first, we will make the following assumptions: 
1. The quantities x(r) and y(r) are random func- 

tions of time with zero mean values, which implies 
that systematic trends are removed [Burner er al., 
19711. They might be due to ageing or to imperfect 
decoupling from environmental changes such as 
temperature, pressure, acceleration, or voltage. 
Characterization of drifts will be considered in 
section 8. 

2. The statistical properties of the stable fre- 
quency generators are described by a model which 
is stationary of order 2. This point has been fully 
discussed in the literature [Barnes er al., 1971; 
Boileuu und Picinbono, 1976; Barnes, 19761. This 
assumption allows one to derive useful results and 
to define simple data processing for the charac- 
terization of frequency stability. 

Actual experimental practice shows that, besides 
long-term frequency drifts, the frequency of a 
high-quality frequency source can be perturbed by 
a superposition of independent noise processes, 
which can be adequately represented by random 
fluctuations having the following one-sided power 
spectral density of fractional frequency fluctua- 
tions: 

(7) 

S,(j) is depicted in Figure 1. Its dimensions are 
Hz-‘. Lower values of a may be present in the 
spectral density of frequency fluctuations. They 
have not been clearly identified yet because of 
experimental difficulties related to very long term 
data acquisition and to control of experimental 
conditions for long times. Moreover, the related 
noise processes may be difficult to distinguish from 
systematic drifts. 

Finite duration of measurements introduces a 
low-frequency cutoff which prevents one from 
obtaining information at Fourier frequencies smaller 

Fig. 1. Asymptotic log-log plot OS S,m for commonly CUCOUII- 
tercd noise proccssu. 

than l/9, approximately, where 8 is the total dura- 
tion of the measurement [Curler and Seurle, 19661. 
Alternatively, this made it possible to invoke physi- 
cal arguments to remove some possible mathemat- 
ical difficulties related to the divergence of S,(j) 
asf -b 0 for a c CI. 

Furthermore, high p&ss filtering is always present 
in the measuring instruments or in the frequency 
generator to be characterized. It insures conver- 
gence conditions at the higher-frequency side of 
the power spectra for a > 0. 

The spectral density of fractional phase fluctua- 
tions is also often considered. From (a), one can 
write, at least formahy, 

s,cn = (1/4+fWJ.n (8) 

The dimensions of S,(j) are s2 Hz-‘. Similarly, 
the spectral density of phase fluctuations cp(t) is 
such as 

S&f) = P~v,)‘S.u) (9) 

It is expressed in (rad)2 Hz-‘. 
The quantity 2(j) [Hulford et al., 19731 is 

sometimes considered to characterize phase fluc- 
tuations. If phase fluctuations at frequencies >f 
are small compared with 1 rad, one has 

an = :s*tn (10) 

where S,(j) is the spectral density of phase fluc- 
tuations of the frequency generator considered. The 
definition of -E”(j) implies a connection with the 
radio frequency spectrum, and its use is not recom- 
mended. 

Since the class of noise processes for which y(r) 
is stationary is broader than that for which the 
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TABLE I, Designation of noise processes in the generation of the oscillation which is due 
a Designrtion Class of Stationarity to white noise within the bandwidth of the fre- 

2 white noise of phase stationary phase quencydett rmining element of the oscillator [Bla- 
fluctuations qui&e, 1953a, b] . It is often masked by other types 

1 flicker noise of phase stationary first-order 
phase increnlcnts 

0 white noise of frqucncy stationlry first-order 
phase increments 

- I Ilicker noise of frequency stationary second-order 
phase increments 

-2 random walk of frequency stationary second-order 
phase increments 

phase is stationary [ Boileau and Picinbono, 19761, 
S,,(j) should preferably be used in mathematical 
analysis. However, it is true that many experimental 
setups transduce cp(t) into voltage fluctuations and 
allow one to experimentally determine an estimate 
of its power spectral density S,(f). 

Table 1 shows the designations of the noise 
processes considered. It also indicates the class 
of stationarity to which they pertain, as will be 
justified later on. 

S,(f) is one of the recommended deftitions of 
frequency stability [Barnes et al., 19711. It gives 
the widest information on frequency deviations y (1) 
within the limits stated previously. 

3. NOISE PROCESSES IN FREQUENCY GENERATORS 

The white phase noise (a = 2) predominates for 
f large enough. It is the result of &he additive ther- 
mal (for the lower part of the electromagnetic 
spectrum, including microwaves) or quantum (for 
optical frequencies) noise which is unavoidably ..* 
superimposed on the signal generated in the oscilla- 
tor [Curler and Sea& 19661. It leads to a one-sided 
spectral density S,,(f) of the form Fkly2/vi P or 
Fh v$‘/v’, P, depending on the frequency range, 
where k is Boltzmann’s constant, h is Planck’s 
constant, T is the absolute temperature, F is the 
noise figure of the components under consideration, 
and P is the power delivered by atoms. 

The flicker phase noise (a = I) is generated mainly 
in transistors, where this noise modulates the cur- 
rent [Halford et al., 1968; He&y, 1972) . The theory 
of this noise is not yet very well understood. 

of noise but has been observed in lasers [Siegman 
and Arrathoon, 19681 and more recently in masers 
[ perrot et al., 19771. The one-sided spectral density 
of fractional frequency fluctuations is then kT/PQ2 
of h v,,/ PQ’ depending on the frequency range, as 
stated above. Q is the quality factor of the fre- 
quencydete rmining element. 

White noise of frequency is typical of passive 
frequency standards such as cesium beam tube and 
rubidium cell devices as well as stabilized lasers. 
It is related to the shot noise in the detection of 
the resonance to which an oscillator is slaved [Curler 
and Searle, 19661. 

Flicker noise of frequency and the random walk 
frequency noise for which a = - 1 and -2, respec- 
tively, are sources of limitation in the long-term 
frequency stability of frequency sources. They are 
observed in active devices as well as passive ones. 
For instance, flicker and random walk frequency 
noises have been observed in quartz crystal resona- 
tors [ Wainwrighr et al., 19741 and rubidium masers 
[ Vanier ef al., 19771. The origin is not well under- 
stood yet. It might be connected, in the fast case, 
with fluctuations in the phonon energy density 
[Musha, 19751. 

Figures 3 and 5 show, for the purpose of ihustra- 
tion, S,,u) for a hydrogen maser for lo-’ 5 f s 
3 Hz [ Vcssor et al., 19771 and for an iodine- 
stabilized He-Ne laser for 10m2 5 f s 100 Hz [ C&ez 
et al., 1978). In both cases, S,c/) is derived from 
the results of time domain frequency measurements 

t 
O,(T) 

Diffusion processes across junctions of semicon- 
ductor devices may produce this noise. Fy. 2. Frequency stability, characterized by the root mean 

White noise of frequency (a = 0) is present in 
quue of the two-sample vari~cc of fractional frequency 
fluctuation, of a hydrogen maser. The M of the ara~h with - - 

oscillators. It is the result of the noise perturbation a slope of -f is typical of white noise of frqucncy, - 
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I . f [M 
lo-’ 1 IO’ 

Fig. 3. Spectral density of frrctionrl frequency fluctuations 
of l hydrogen maser. The parts of the graph with slopes 0 
and 2 coincide with theoretical expectations. 

(see section 6.4), as shown in Figures 2 and 4 but 
is very close to theoretical limits specified above. 

It is worth pointing out here that in systems where 
a frequency source is frequency slaved to a fre- 
quency reference or phase locked to another fre- 
quency generator the different kinds of noise in- 
volved are filtered in the system [Curler and St&e, 
1966; C. Audoin, unpublished manuscript, 19761. 
In these cases, at the output of the system, one 
can fmd noise contributions pertaining to the model 
(7) but appearing on the Fourier frequency scale 
in an order different than that shown in Figure 
1. This is depicted in Figures 6 and 7 for the case 
of a cesium beam frequency standard consisting 
of a good quartz crystal oscillator which is frequency 
controlled by a cesium beam tube resonator. 

The model for the frequency fluctuations is more 
useful if the noise processes can be assumed to 
be gaussian ones (in particular, momenta of all 
orders can then be expressed with the help of 
momenta of second order). The deviation of the 
frequency being the result of a number of elementa- 
ry perturbations, this assumption seems a reason- 
able one. Furthermore, the normal distribution of 

Fig. 5. Spectral density of fractional frquency fluctuations 
of I He-NC iodine-stabilized laser. The solid line represents 
the spectral density of fractional frequency fluctuations corre- 
sponding to experimental results, and the dotted line represents 
the expected vahte of S,.(J). 

j, the mean value of frequency fluctuations 
averaged over time interval r as defined in (16), 
has been experimentally checked for a = 2, 1, 0, 
and -1 [Lesuge and Audoin, 1973, 19771. This 
is shown in Figure 8 for white noise of frequency, 
for instance. 

4. MEASUREMENrS IN THE FREQUENCY DOMAIN * 

Measurement of power spectral density of fre- 
quency and phase fluctuations can be performed 
in the frequency domain for Fourier frequencies 
greater than a few lo-’ Hz owing to the availability 
of good low-frequency spectrum analyzers. 

4.1. Use of a frequency discriminator 

Frequency discriminators are of current use to 
characterize radio frequency and microwave gener- 
ators. A resonant device such as a tuned circuit 
or a microwave cavity acts as a transducer which 

‘s,(fh-3 
rodo, PI 

mJZ _ 

Iti’. \ lo-“. 
lo-y ‘1 [sl I 

10-z 1 lo' 
m.Zl 

.,lJ , 
64 

lo" m-z 1 lo' lo' 
Fii. 4. Frequency stability, charrcterixed by the root mean 

square of the two-sample variance of fractionaI frequency Fig. 6. SpectraI density of fractiotuI frequency fluctuations of 
fluctuations, of a He-NC iodine-stabilized Iaser. a p3d quartx crystei osciktor. 

8 See Appendix Note # 6 
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‘lo-’ lo-’ I lo’ lo’ - 

Fii. 7. Spectral density of fractional frequency fluctuations 
of the same quartz crystal oscillator M in F&ure 6 but frequency 
controlled by a Cs beam tube resonance. 

transforms frequency to voltage fluctuations. This 
method can be applied to optical frequency sources 
too, as shown in Figures 9 and 10. Here the source 
is, for instance, a CW dye laser, and the frequency 
selective device is a Fabry-Perot etalon. The second 
light pass allows one to compensate for the effects 
of amplitude fluctuations and to adjust to a null 
the mean value of the output voltage. The slope 
of this frequency discriminator equals 1 V MHz-‘, 
typically, with a good Fabry-Perot etalon in the 
visible. 

I I I I I I \-I 

Fig. 8. Distribution of countin time results for white fre- 
quency noise (cesium beam frequency standards, T = IO s) 
in Galtonian coordinates. Circles represent the cumulative prob- 
ability C0lTCS~lldiiJJ to IT, - ~1 With T = (T, ). Solid tines 
correspond to the normal distribution of the same width. 

t V(v) 

Fig. 9. Principle of frequency to voltage transfer in a frequency 
discriminrtor. 

4.2. Use of a phase detector 

This technique is well suited for the study of 
frequency sources in the radio frequency domain 
0.2 MHz c u0 < 500 MHz, in a range where very 
low noise balanced-diode mixers which utilize 
Schottky barrier diodes are available. This tech- 
nique has mainly been promoted by the National 
Bureau of Standards [Shod, 197 1; Walls and Stein, 
19771. 

Figure 11 shows the principle of the determination 
of the phase fluctuations in frequency multipliers, 
for instance. The two frequency multipliers are 
driven by the same source. A phase shifter is 
adjusted in order to satisfy the quadrature condition. 
One then has 

~0) = D [(o,(r) - M)l (1I) 

where D is a constant and ‘p, and h are the phase 
fluctuations introduced in the devices under test. 
It is assumed that the mixer is properly used to 
allow a balance of the phase and amplitude fluctua- 
tions of the frequency source. 

This technique is often used to characterize phase 
fluctuations of two separate frequency sources of 
the same frequency. The quadrature condition is 

F. f? otolon difhtntitl 

Fig. 10. Principle of frequency noise analysis of a dye laser. 

* See Appendix Note X 25 
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F@. Il. Principle of measurement of phase noise with a highquality balanced mixer used as a phase comparator. 

utrtz Clpl 

P 
Frequency 

Source 

c 
PhlB@ 
omparrto 

t 

output 

insured by phase locking the reference oscillator, 
number 2 of Figure 12, to the oscillator under test. 
Fluctuations of the output voltage u(r) at frequen- 
ciesflarger than the frequency cutoff of the phase 
loop are proportional to phase fluctuations of 
oscillator number 1. On the contrary, components 
of u(t) at frequencies smaller than the above fre- 
quency cutoff are representative of frequency fluc- 
tuations of oscillator number 1. 

The requirement of having a reference oscillator 
of the same quality as the oscillator to be tested 
may be inconvenient. It has recently been shown 
that the phase noise of a single oscillator can be 
measured by using the mixer technique, but with 
a delay line [Lance et al., 19771. Figure 13 shows 
a schematic of the setup. The signal from the 
frequency source is split into two channels. The 
reference channel includes a phase shifter for the 
purpose of adjustment. It feeds one of the mixer 
inputs. The other channel delays tbq signal before 
it is applied to the second mixer input. It can be 
seen that the power spectra density of the mixer 
output is proportional to (2~17,)‘s <n, where TV 
is the delay. The sensitivity of thii technique is 
then reduced for low Fourier frequencies. However, 

output 
Frequency Control 

Fig. 12. Principle of phase noise measurement of oscillators. 
A phase lock loop insures the phase quadrature of the two 
phase-compared s@als. 

some signal to noise enhancement can be achieved 
in a more elaborate configuration with two differen- 
tial delay line systems in which cross-spectrum 
analysis is performed on the signal output from 
the two delay line systems [Lance er ol., 19781. 

Another method has been proposed to determine 
the power spectrum of fractional frequency fluctua- 
tions of a single highquality frequency source 
[Groslumbert, 19771. It is shown in Figure 14. Two 
auxiliary oscillators, waich do not need to be of 
the same quality as the oscillator under test, are 
used. They are phase locked to the frequency 
generator to be characterized. The control voltages 
v,(t) and v2(t) are appropriately filtered in order 
to obtain, at their outputs, a voltage v:(t) = K, (+, 
- +,,) and vi(r) = K2(& - G&J, respectively, where 
K, and K2 are constants and the subscripts 0, 1,. 
and 2 refer to the oscillator under test, oscillator 
number 1, and oscillator number 2, respectively. 
It can be shown that the cross-correlation function 
of vi and vi is proportional to the autocorrelation 
function of the frequency fluctuations of the 
oscillator under test. Its spectral density of frac- 
tional frequency fluctuations can then be obtained 
via Fourier transform. 

4.3. Recision of measurement in the frequency 
domain 

A spectrum analyzer includes a filter of bandwidth 
Af, centered at frequency f, a nonlinear device 
which measures the power in the faltered signal, 
and a low pass filter which integrates the output 
signal for the time T. The integration time T is 
not infiite, and the filter bandwidth A/ is not 
extremely narrow. Only an estimate s(f, Af, T) 
of SV, can then be obtained. Well-known results 
show that the precision p in the measurement of 
the power spectral density of a gaussian process 
is given by 
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Fig. 13. Principle of phase noise measurement of a single-frequency source with a delay line. 

JJ = (T * A”)-“’ (12) * and Av: denote the frequency fluctuations of the 
two sources and Av, the frequency fluctuations of 
the beat note, one has 

No attempt has been made, to our knowledge, to 
specify p more accurately for the different noise 
processes which can be encountered in frequency 
metrology of stable sources. 

Av, v, Av, Av; 
y*=y=- 

I I 
e-- (1% 

VI VI vo 4 

The fractional frequency fluctuations of the beat 
note are then proportional to those of the frequen- 
cies v0 and v6 but multiplied by the factor vO/v, 
which is much larger than unity. 

With stable generators at frequencies lower than 
approximately 100 GHz the frequency fluctuations 
are small enough that the beat note can be at low 
frequency. The counter is then used as a period 
meter, and a high precision in the measurement 
is achievable. 

5. MEASUREMENTS IN THE TIME DOMAIN 

Time and frequency counting techniques are well 
known [Curler and Se&e, 19661. They are the 
easiest to implement to provide information on the 
low-frequency content (f s 1 Hz) of the power 
spectra of fractional frequency fluctuations. 

5.1. The bear frequency method 

A beat note at frequency v, is obtained from 
two frequency sources under test, with frequencies 
v, and v;, respectively, such that v0 =L ~6. If Av, 

Fig. 14. Principle of phase noise measurement of a single high- 
quality frequency source with a corrclator. 

Optical frequency standards show larger fre- 
quency fluctuations in absolute value. For instance, 
a laser stabilized at 500 THz (A = 0.6 pm) with 
a fractional frequency stability of 1 x lo-l3 exhibits 
frequency fluctuations of 50 Hz. They can be easily 
measured if the beat note is at 50 MHz, say, when 
the counter is used as a frequency meter. In the 
case of iodine-stabilized He-Ne lasers the beat note 
is easily obtained by locking the two lasers to 
different hyperfme components of the considered 
iodine transition. Otherwise, the frequency offset 
technique is used [Burger ond Hull, 19691. 

5.2. The time diffrrence method 

The time difference method [Allan and Daums, 
19751 must be used with time standards which 
deliver pulses as time scale marks. Distant time 
comparison and synchronization by TV pulses, light 
pulses, Loran-C pulses, for instance, pertain to this 
category. It provides information on the relative 
phases of the two clocks under test. 

Time interval measurements being very precise 

* See Appendix Note # 26 
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Fig. IS. Principle of the time difference method. 

(a precision of 10-100 ns is typical, depending on 
the class of the counter), they are also used with 
C.W. frequency generators, as shown in Figure 15. 
This method is then well suited to the case in which 
the frequency sources under test have the same 
nominal frequency uO, e.g., atomic frequency stan- 
dards. An auxiliary frequency source, such as a 
frequency synthesizer, with frequency V; allows 
one to obtain, at the output of the mixers, two 
beat notes at the desired frequency Y, = Iu, - 
~61. After amplification the zero crossing of one 
of the beat notes starts the time interval counter, 
and the zero crossing of the other beat note stops 
it. One has 

x, = (~fJ~,XXo - x;> (14) 

where x, is the fractional phase fluctuation of the 
beat note and x,, and xb that of the two frequency 
standards. For instance, with u. = 5 MHz, Y, = 
0.5 Hz, and a precision in the time interval measure- 
ment of 0.1 t~s a precision of lo-” s at the nominal 
frequency v. is achieved. 

6. CHARACTERIZATION OF FREQUENCY STABILITY 
IN THE TIME DOMAIN 

6.1. Significance of experimental data 

It is well established that measurement in the 
time domain with an electronic counter samples 
phase increments and gives A,v(r,) defined as 

4cpk) = cpk + 3 - N,) WI 

The phase increment A+(P&) is related to Tk, the 
average over time interval [1*, I, + T] of fractional 
frequency fluctuations. We have 

1 
v*=- 

tt+. 
y(r’)dr’ (145) 

7 4 

where u, is the mean frequency of the processed 
signal. 

Samples of E can be combined in many different 
ways. Some of those which have been considered 
wil.l be reviewed here. On the other hand, the 
number of samples is finite, and the question arises 
as to the related uncertainty in the characterization 
of frequency stability and of the best use of the 
data. 

6.2. N-sample variance 

The sequence of measurement is as shown in 
Figure 16. The mean duration of each measurement 
is T, and T is the time interval between the begin- 
nings of them. 

In statistical estimation it is common to consider 
sample variance [Papoufis, 1965). The N-sample 
variance of yk is defme$ as 

(17) 

where the factor N/(N - 1) removes bias in the 
estimation. 

The dependence of the expectation value of the 
N-sample variance on the number N of samples, 
the sample time 7, and the power spectral density 
has been considered by Allan [ 19661. We wiII only 
consider special cases in the following. 

It can be shown that computation of the average 
of the N-sample variance introduces a filtering of 
the power spectral density S,,(J) [Barnes er al., 
1971). We have 

s 

m 
b;(N, 7-9 7)) = ~ml~(/)I ‘I (18) 

0 
H(f) is the transfer function of a linear filter which 
has the following expression: 

[gyl-[EGjj 

0% 

- 

4 t r.1 t r+z 

F&. 16. Sequence of time domain measurement. 
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For f such that 

nfTa I (20) 

we have 

Equation (21) shows that for finite N the integral 
in (18) will converge at the lower limit for Q = 
-1 and a = -2, as well as for a = 2, 1, and 
0. One sees that very low frequency components 
of S,,(f) are best eliminated for small values of 
N. 

6.3. Variance of time-averaged frequency 
fluctuations 

W&n N goes to infinity, (u:(w, 7, T)) becomes 
oz(y,.), the variance of time-averaged frequency 
fluctuations or of the first difference of phase 
fluctuations [Cutler and Searle, 19661 as given by 

U’G) = G>‘) (22) 

where angle brackets denote mathematical expecta- 
tion. 

In the presence of a single-pole low-pass filter 
with cutoff frequeng f, we have the following re- 
lation between uzCyL) and S,(j): 

with 

(24) 

Equation (24) shows that o’QT) converges for a 
= 2, 1,0 but diverges for flicker noise of frequency 
(a = -1) and raniom walk of frequency (a = -2). 
The variance 02(y,) is no longer used to characterize 
frequency stability. However, it is useful to relate 
the RF power spectral density to S,,(f) [Rutman, 
19740). 

6.4. Two-sample variance 

For the special case N = 2, (17) gives 
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and we have m 
(032, T, 7)) = 

I 
q.f) 

1 + (flf,) 2 
IWf)12df 

0 

with 

sinnfr 2 
IH2U)l’ = 2 nf7 

[ I 
(sin nf 7-y (27) 

For small f, such that n/T a 1, ]H2(f)]’ varies 
as f ‘. The integral in (26) is thus defined for flicker 
noise of frequency (a = - 1) and random walk of 
frequency (a = -2), as well as for a = 2, 1, and 
0. It is easy to show that the quantity O;,,, - 
I,) represents a second-order difference of phase 
fluctuations. It follows that second-order phase 
increments are stationary for a = - 1 and -2 (as 
specified in Table 1). 

6.4.1. Two-sample variance without dead time. 
The two-sample variance (Allan variance) without 
dead time, for T = T, is now generally accepted 
as the measure of frequency stability in the time 
domain. One sets 

u;:(7) = (42, 7, 7)) P-9 

Table 2 gives asymptotic expressions of u:(r) in 
the cases 2nf,7 > 1 and 2nf,T < 1. Expressions 
of U:(T) in the presence of a sharp high-frequency 
cutoff fh have been given by Barnes et al. [ 19711 
for the case 2wfhT zw 1. 

One sees in Table 2 that a:(~) has a characteristic 
r dependence for each type of noise considered, 

TABLE 2. Asymptotic expressions of the two-sample variance 
for the noise processes considered 

u;(T) 

S,U) 2nf,r a I 2%~ a I 

hJ2 
.?!!A a 

8m’ 2r * 

h,f 
3h, h @/,r) 

4n’r’ 

(42, T. 7)) = f (WA+, -9d’) (25) 

a See Appendix Note # 27 
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such as U:(T) = k/7’. This is specified as follows 
for 271fcT > I: 

Q )r -- 
2 2 
1 2 
0 1 

-I 0 
-2 -I 

For a = -1 the ~~(7) graph is a horizontal line, 
which justifies the designation ‘flicker floor’ for 
that part of the graph. 

Usually, under experimental conditions the rela- 
tion 2nf,T ZS- 1 is satisfied. The noise processes 
which perturb the oscillation can then be identified 
from a U,,(T) graph if it is assumed that the afore- 
mentioned model of frequency fluctuations is valid. 
Table 2 shows in which cases U:(T) depends on 
the frequency cutoff. The latter must then be 
specified. 

The case 271f,T a 1 is useful for the analysis 
of the effect of frequency of phase servocontrol 
loops where the frequency fluctuations of the fre- 
quency reference are low-pass filtered. Bias func- 
tions have been given to relate (1) the two-sample 
variance with and without dead time and (2) the 
two-sample variance to the N-sample variance 
[Barnes et ol., 19711. 

NJ-’ lo-’ 1 D 00 

Fig. 17. The solid line represents the variation of b-,(u;(2, 
T, 7)) versus r/(T - T) for the flicker noise of frequency. 
The dotted line represents the mymptotic value for (T - T) 
a T. 

time is then 2rrf,(T - T) a 1. Results for 2w/,T 
< 1 are also available IP. Lesage and C. Audoin, 
private communication, 1978). Table 3 shows that 
in the presence of-dead time, i.e., Zlrf,(T - T) 
> 1, the expression for the two-sample variance 
is noticeaibly modified for a = -1 and -2. 

The case of the flicker noise of frequency is 
particularly interesting. Figure 17 shows the varia- 

6.42. Two-sample variance with dead time. * tion of the two-sample variance with dead time 
General expressions for the N-sample variance with 
dead time have been given (Barnes et al., 19711 
for useful values of a if the condition 2wfh7 > 
I is satisfied. The case of the two-5ample variance 
with dead time has not been emphasized enough 
yet. Table 3 compares the two-sample variance with 
and without dead time when the condition 2mf,T 
> 1 is fulfilled. The condition of negligible dead 

TABLE 3. Comparison of the two-sample variance with and 
without dead time for 2~rL7 zw I 

ot(2. T. T) 

: See Appendix Note # 28 

as a function of 7/(T - T). The flicker floor does 
not exist anymore if the value of this ratio is 
modified when the sampling time T is changed. The 
identification of the noise process which perturbs 
the oscillation might then be wrong if the effect 
of dead time is not taken into account. ** 

6.5. Precision in the estimation of the two-sample 
variance 

Measurements are always of fdte duration, and 
therefore the number of available values of y& is 
finite. We are then faced with the problem of the 
precision in the estimation of the time domain 
frequency stability measurement. This is an impor- 
tant one because successive characterizations of 
the frequency stability of a given device allow one 
to get information on the stationarity of the pr* 
cesses involved in the perturbation of its frequency 
but within the limits of the precision of the charac- 
terization. Precision in the estimation of the fre- 
quency stability of individual oscillators of a set 
ofp frequency generators (p > 2) [Gray and Allan, 

** See Appendix Note # 29 
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19741 critically depends on the precision of the 
P(P - 1)/2 frequency comparisons which can be 
performed by arranging oscillators in pairs. Fur- 
thermore, the uncertainty in the determination of 
~~(7) translates directly into the uncertainty in 
determining the h, coefficients if the frequency 
generator is perturbed by noise processes modeled 
by (7). 

The precision in the estimation of time domain 
measurements of frequency stability has been con- 
sidered by several authors [Tuusworthc, 1972; Lc- 
sage and Audoin, 1973; Yoshimura, 19781. It has 
been determined for most of the experimental 
situations which can be encountered in the two- 
sample variance characterization of frequency 
stability, with or without dead time (P. Lesage and 
C. Audoin, private communication, 1978). 

Calculation of the expectation value of the two- 
sample variance according to (25) requires an infinite 
number of data. But, in practice, only m counting 
results are available, and one calculates the estimat- 
ed average of the two-sample variance as follows: 

1 n-l 

bz(2, T. T, m) = x 
2(m - 1) k-l 

U k+l - G’ (29) 

One can easily show that the expectation value 
of gz(2, T, T, m) equals the averaged two-sample 
variance with dead time. Thus the finite number 
of measurements does not introduce bias in the 
estimation of the two-sample variance. 

The estimated averaged two-sample variance 
(EATSV) being a random function of m, we need 
to characterize the uncertainty’in the estimation. 
We thus introduce the variance of the EATSV; 
according to the common understanding of P 
variance. we set 

u2 [8:(2, T, 7, m)l 

= ( [9~(2, T, 7, m) - GJ;(~,~ T, ?))I ‘) (30) 

With the expression (29) of the EATSV we get 

u2 @:(2, T, 7, m)l 

= [ 2(m’v *,3’(g,#‘4 t31) 

with 

& = (f,+, - u,)’ - 2(0;(2, T, 7)) (32) 

The classical law of large numbers [Pupoulis, 
19651 which states that the true variance of a sum 

of (m - 1) uncorrelated random variables decreases 
as l/(m - I), even for small values of (m - l), 
does not apply here. We are considering the quanti- 
ties B, which are cor&ated because two adjacent 
differences u,,, - y,) and u,+2 - j,,, ) are ob- 
viously not independent. 

Equation (31) can also be written as 

u2 r&:(2, T, 7, m)] = - 

1 n-2 

+ 
c 

2(m - l) k-i 

(m - 1 - k)T, 1 (33) 

with , 

rk = (h&-k) (34) 

r,, which does not depend on m, represents the 
autocorrelation coefficient of B, and B,+. Since 
the same data are used in two adjacent pairs, the 
autocorrelation coefficient r, , and possibly others, 
differs from zero. Equation (33) then shows that 
the l/(m - 1) dependence also occurs for the 
random variables considered, but asymptotically for 
large enough values of (m - 1). 

The variance of the EATSV can be relatqd to 
S,(J) if it is assumed that the quantities y, are 
normally distributed. This is a reasonable assump 
tion, as shown in section 2. 

It is useful to introduce A(m), the fractional 
deviation of $;(2, T 7, m) defined as 

A(m) = 
b:(2, T, T, m) - (u,‘(2, T, 7)) 

b;(2, T, 7)) 
(35) 

The standard deviation u [A(m)] defines the preci- 
sion in the estimation of the two-sample variance. 
Expressions for u [A(m)] which are valid for m 
> 2 have been established for all possible values 
of 2’rrf,7 and Znf,(T - 7) but will not be given 
here. 

In practice, the time domain frequency stability 
of a frequency source is characterized by the 
standard deviation (8,2(2, T, T, m)] “2. We there- 
fore consider 8 defined as 

~ [6;(2, T, 7, m)] I” - (u;(2, T, T)) “’ 
= 

-(cr;(Z, T, 7))“’ 
(36) 

u(6) specifies the precision in the estimation of 
the time domain frequency stability measurement 
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t Ka 

I r 

1 10 lO0- 

Fig. 18. Variation of K, es a function of r = T/r for the 
commonIy encountered noise processes and for 2vf,r = IO. 

from a limited number of data and allows one to 
draw error bars on a frequency stability graph. 

For 2nf,7 zw 1 and m B 1 we have 

u(6) 31 K-m-"' (37) 

The values of K, are given as follows subject to 
the condition that the dead time is negligible, i.e., 
Znf,(T - 7) a 1: 

a K A 
2 0.99 
I 0.99 
0 0.87 

-I 0.77 
-2 0.75 

In the presence of dead time the values of K, 
depend on the noise process considered as well 
as the values of 2qf,7 and I = T/-r. Figure 18, 
valid for 21rf,7 = 10 shows that the dependence 
of K, with dead time is especially pronounced in 
the vicinity of I = 1 for a = 1 and 2. 

7. CHARACTERIZATION OF FREQUENCY STABILITY 
VIA FILTERING OF PHASE OR FREQUENCY NOISE 

Equations (27) and (28) show that the definition 
of the time domain measurement of frequency 
stability U;(T) involves a filtering of S,,(j) in a linear 
filter. Figure 19 shows the impulse response of this 
filter, which represents the sequence of measure- 

h ft) 

t 

Fig. 19. Impulse response of a linear Nter which represents 
computation of two-sample varience. 

ment for T = T, and Figure 20 depicts the related 
transfer function. One can also consider the effect 
of filtering a voltage proportional to y(t) or x(r) 
in a physically realizable analog filter. 

A high pass filter of cutoff frequency 1 /rrr has 
been considered [Rutman, 19746; Rutman and 
Suuvuge, 19741. Its input receives a voltage propor- 
tional to x(r). It is provided by a mixer used as 
a phase comparator. The rms value of the filtered 
signal is measured. when the frequency cutoff is 
changed, this rms value shows the same lo versus 
a dependence as Shown in section 6.4.1. More 
interesting is a bandpass filter centered at the 
variable frequency f = l/27 but with a fixed value 
of its quality factor. It allows one to distinguish 
white and flicker noise of phase, as it gives k = 
3 for a = 2; the lo versus a dependence being 
otherwise unchanged for a = 1, 0, - 1, and -2. 

Similarly, a frequency discriminator, giving an 
output proportional to y(t), followed by two cas- 
caded resistance-capacitance (RC) filters and asrms 
voltmeter allows one to obtain a useful approxi- 
mation of the two-sample variance. The filters 
insure low-pass and high-pass filtering with RC = 
7/2 [Wiley, 19771. 

Fii. 20. Transfer function of the linear filter with irnpulsb 
response shown in Figure 19. 
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8. SPECTRAL ANALYSIS INFERRED FROM TIME 
DOMAIN MEASUREMENTS 

The methods of time domain characterization of 
frequency stability reviewed above allow one to 
identify noise process if they are described by 

(38) 
m- -1 

This may not be the case. Furthermore, it is of 
interest to determine the power spectral density 
of fractional frequency fluctuations for Fourier 
frequencies lower than 1 Hz. In this region, time 
domain measurements are the most convenient, and 
the question arises as to their best use for spectral 
analysis. 

8.1. Selective numerical fillerirg 

Equations (24) and (27) show that calculation of 
the variance of the second difference of phase 
fluctuations (the two-sample variance) involves a 
more selective filtering than calculation of the 
variance of the fust difference of phase fluctuations. 
One can then consider higher-order differences 
[Bumes, 1966; Lesage and Audoin, 1975a, b] . The 
nth-order difference of phase fluctuations is denot- 
ed as nA,,,cp(t,), where 7 and T have the same 
meaning as in section 6.1. and 6.2. This nth dif- 
ference is defined by the following recursive equa- 
tion: 

“A,.cg(f,) = ("-')AreT'p(t, + T) - '"-"A,,&) (39) 

which introduces binomial coefficients Ci-, . We 
have 

r-l 
“A,,d$) = C (-WC:-, ((o It, + (n - 1 - i)T + ~1 

I-0 

-qJ[r,+(n-l-i)T]) w  

The transfer function H”(/, T, T) of the linear filter 
which represents the calculation of the variance 
of the nth difference of phase fluctuations is given 
by 

p-1 

IHm(f, TV 41 = --& (sinlrfT)“-’ sinnfr (41) 

It should be pointed out that for f 7 a 1, one 
has 

C& 

C;- 

-1or 
u . 

.-c; 

--c; 

-C4 

+loT t 

I-- 

Fii. 21. Impulse response of a linear Nter which represents 
computrtion of the variance of the 20th difference of phw 
fluctuations. Cj represents binomial coefficients. 

Figure 21 shows the impulse response of the linear 
filter which represents the calculation of the 
variance of the 20th difference of phase fluctua- 
tions, and Figure 22 shows the related transfer 
function. A selective filtering is then involved 
around frequency l/27. 

Such a variance is also known as a modified 
fiadamard variance [Baugh, 19711. The spurious 
responses at frequencies (21 + 1)/27, where 1 is 
an integer, can be eliminated by a proper weighting 

3110'. I 

2110’. 

IO’ . 

h.C . A . A 2yc, 
0 1 3 5 7 

Fig. 22. Transfer function of the linear fiiter considered in Fbure 
21. Ik((f, T, ?)I - (Z?rfT)“-’ f 7 a I (42) 
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of measurement results or by ftitering with the help spectral density for discrete values of the Fourier 
of an analog filter [Groslumberr, 1976) . frequency. 

Such a technique of linear filtering has been used 
to show that good quartz crystal oscillators exhibit 
flicker noise of frequency for Fourier frequencies 
as low as lo- 3 Hz [tesuge and Audoin, 197561. 
Furthermore, it is well suited to the design of 
automated measurement setups [Peregrine and 
Ricci, 1976; Groskumberr, 19771. 

9. STRUCTURE FUNCTIONS OF OSCILLATOR 
FRACTIONAL PHASE AND FREQUENCY 

FLUCTUATIONS 

The best use of experimental time domain data 
for selective filtering has been considered by Boi- 
leuu [ 19761. 

Interest in the variance of nth-order difference 
of phase fluctuations was recognized early in the 
field of time keeping (see for instance, Barnes 
[ 19661). This can be easily understood from (43). 
which shows that an efficient filtering of low- 
frequency components of frequency fluctuations 
is then introduced. It allows one to deal properly 
with frequency drifts, which will now be considered, 
and poles of S,.(j) of order 2(n - 1) at the origin. 
It is equivalent to saying that the nth difference 
of phase fluctuations allows one to consider random 
processes with stationary nth-order phase incre- 
ments. 

8.2. High-puss fihering 

If frequency fluctuations v(r) are filtered in an 
ideal high-pass filter with transfer function G,,cf,, 
j) such that 

(43) 

its output z(t) is such that 

t+ - 
5 5 

w 
G,(f,f, >s,<n4 = qn4 (W 

Equation (404) shows that the dzrivative of C? is 
-S,(j), and spectral analysis, and therefbre 
characterization of frequency stability, are possible, 
in principle, by high-pass filtering. 

Possible realization of the high-pass filter by 
techniques of digital data processing have been 
specified, such as the method of ftite-time variance 
and the method of finite-time frequency control. 
Processing of finite-time data is aimed to properly 
deal with the nonintegrable singularity of the power 
spectral density at Y = 0 [Boileuu, 1975; Boileuu 
and Pi&bono, 1976). The method is well suited 
to the analysis of drifts or slow frequency changes. 
Practical use of this method has not been reported 
yet. 

8.3. Use of the sample spectral density 

It has been shown in section 8.1. that spectral 
analysis from the Hadamard variance or its modified 
forms requires a series of measurements at time 
interval T in order to specify the spectral density 
at frequency l/27. Another point of view has been 
considered [ Boileuu and &ecourtier, 1977) . From 
a set of measurements of yk, sampled at frequency 
I /T. it allows one to obtain an estimation of the 

where Q, is a random variable modeling the kth- 
order frequency drift and (o(1) represents random 
phase fluctuations. We then have 

I I’ 
X’(t) = 

7 -2 
d,-, p + *(I) (47) 

and 
I-I *k 

Y’(l) = c dkE +Y(t) 
k-l 

(48) 

, where dk = fk,/21w, is the normalized drift coeffi- 

This question has been formalized by Lindsey 
and Chic (1976, 197q, who introduce structure 
functions of oscillator phase fluctuations. The nth 
order structure function of phase fluctuations is 
nothing else but the variance of the nth difference 
of phase fluctuations, as considered in section 8. 
Then, by deftition, the n&order structure function 
of fractional phase fluctuations is given by 

D!“)(T) = ~([“A,.,xO,)l ‘1 (45) 

where E ( *) means expectation value. The fractional 
phase (or the clock reading) at time r, is x(t,). 
We assume T = 7. 

Let us consider an oscillator, the phase (o’(r) 
of which is of the following form except for an 
additive constant: 
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cient and x(r) and y(f) have the same meaning as 
in the preceding sections. The notations x’ and y ’ 
refer to an oscillator with drift. 

It can then be shown that we have 

Do”) = +‘E [d;-,] 

5 

c) 
+2” s,(f) 

si2.P (n/r) 
I=n 

0 cwl 2 
df (49) 

D(“)(T) = 2k 5 
. 

I s <n 
sil+ (IrjT) 

Y 
(ws 

df I>n (50) 

0 

If one applies (49) to the case of an oscillator 
without drift, one can easily show that the following 
equations are satisfied: 

a’&) = (1/72)0”‘(T) I (51) 

and 

d,(T) = ( l/2T2)o;‘)(T) (52) 

This is indeed not surprising because apart from 
more or less complicated mathematical formalism 
the definitions of the considered variances and 
structure functions are closely related, as has been 
emphasized here. 

Relations between sample variance and structure 
functions have been given by Lindsqv ond Chic 
[ 19761, whereas the relation between structure 
functions and several different approaches of fre- 
quency stability characterization has been analyzed 
by Ruzmun [1977, 19781. 

For the generally accepted noise model defined 
by (7) the T dependence of higher-order structure 
functions is the same as the two-sample variance, 
as shown in Table 4 [Lindsey und Chie, 19786 ] . 
As stated above, structure functions of order n 
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allow one to consider spectral densities which vary 
asf” at the origin with a L -2(n - 1). For instance, 
for n = 3 it is possible to characterize frequency 
fluctuations of an oscillator with a power spectral 
density of fractional frequency fluctuations given 
by S,Cr> = x:-. h.f”. This oscillator exhibits 
stationary third-order increments of phase fluctua- 
tions. 

In the presence of a frequency drift described 
by a polynomial of degree 1 - 1, structure functions 
of degree n < I are meaningless: their computation 
yields a time-dependent result. For n = I the Ith 
structure function shows a long-term T dependence 
proportional to TV. This dependence disappears for 
n > 1. Although a power spectral density of the 
for@-@-‘) would also give the structure functions 
a variation of the form TV, this variation does not 
depend on n, provided that the function is meaning- 
ful. It is then possible, at least in principle, to 
identify frequency drifts and to specify their order. 
This is illustrated in Figure 23 according to Lindsq 
and Chie [19786]. However, there are not yet 
experimental proofs that such a characterization 
is achievable in practice. 

10. POWER SPECTRAL DENSITY OF STABLE 
FREQUENCY SOURCES 

The power emitted by a source of time-dependent 
voltage v(t) given by (1) is S,(w) d u in the frequency 
range [u, v + dv] , where S,(u) is the power spectral 
density of the source. The dimensions of S,(v) are 
V2 Hz-‘. The main interest of power spectral 
density, in frequency metrology, is related to high- 
order frequency multiplication. We will only intro- 
duce the subject by giving the relations between 
S,(V) and S,(J) and stating present problems in 
the field. 

TABLE 4. SWIICIU~C functions of orders I, 2. 3, md 4 for fractional phase fluctuations of commonly encountered noise processes 
for 2n/,r a I 

D”‘(r) . 

L ha/, 
n’ 

D (‘)( T) I 

EhJ, 
2na 

hf 

ho 
h-,f -’ 

h-a/ -’ 

$4 hfnf;rI 

JioT 
4h-,? h 2 
4 
-n’h-,T’ 
3 

F h, tn (“f.7) 
Tr ’ 

3h,r 
6.75 h-,7* 

2n’h-,t’ 

5 h, hi (“/,T) 

Ioh,? 
20.7 h-,7’ 

yn’h-,T’ 

From Undqy and Chk (197861 
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where Au is the half width at half maximum of 
the power spectra defined as 

2Av = m$h, (57) 

We obviously have 2aAu . T= = 1. If oscillators 
are considered, one has h, = kT/PQ’ in the 
radiofrequency and microwave domain and h, = 
h v,/PQ 2 in the optical frequency domain, where 
P is the power delivered by the oscillator and Q 
the quality factor of the frequency-determining 
element. Table 5 gives theoretical values of co- 
herence time and linewidth of good oscillators. It 
is only intended to illustrate a comparison, often 
made, of the spectral purity of oscillators. It must 
be pointed out that, in practice, other noise pro- 
cesses exist which modify these results. Even any 
meaning of T, and Au is removed if R,(T) is not 
defmed. 

Multiplication of the frequency by n multiplies 
Av and divides 7, by the factor n2. 

lo- T 14 m 
1 lo lo' lo' lo' lo5 

Fig. 23. (Solid line) Two-sample variance of an oscillator 
showing a linear frequency drift of IO-” per day and flicker 
noise of frequency given by S,(J) = 7.2 x IO-“/-‘. (Dotted 
line) The third difference of fractional phase fluctuation is 
independent of the drift (according to Lindsry und Chic [ 1978bj. 

Negligible amplitude noise and gaussian phase 
fluctuations being assumed, it is well known that 
the autocorrelation function of u(t) is R,(T) given 
by 

Ru (4 = 2 cos2nv,1 exp [ -~(2lrv,)‘ct (v,)] (53) 
L 

As C?(E) is only defined for stationary phase 
fluctuations and for phase fluctuations with station- 
ary first increments, the same is true for R”(T) and 
therefore S,u). 

10.1. White noise of frequency 

This is the simplest to deal with. If the frequency 
of the source is perturbed by a broadband white 
noise of frequency, one has S,,(j) = h, and d(x) 
= (h,/27). Whence 

vi 
Rub) = T cos2nvor exp 

ITI 
-- 

( 1 
(54) 

7 c 

where T, is the coherence time of the signal. We 
have 

T= = (&;h,) -’ (55) 

The one-sided power spectral density is then repre- 
sented by a Lorentzian given by 

S,(v) = v: 2nAv 

(2rAv)’ + [2n(v - vo)] 2 (56) 

10.2. White noise ofbhase 

Presently available good quartz oscillators are 
affected by white noise of phase. It is easy to show 
from the definition (16) of yk that the following 
equation is satisfied: 

f [~~WGl 2 = R, (0) - 3 6) (58) 

where R*(T) denotes the autocorrelation function 
of the stationary phase fluctuations v(l). 

The expression of the one-sided S,(V) then fol- 
lows putman, 1974~; Lindsey and Chie, 1978a): 

S,(v) = q e-=*(O) [8(v - vo) 

+S,(v-v,)+~s,(v)~s,(v)+ *-.I (59) 

where the asterisk denotes convolution and the 
bracket contains an infinite set of multiple-convolu- 
tion products of S,(u) by itself. Such an equation 
is not easily tractable. It is the reason why the 

TABLE 5. Theoretical values of correlation time and power 
spectrum linewidth for various oscillators 

Oscillator v.,. Hz h,. Hz-’ T,, s 2Av. Hz 

5-MHZ 
quartz xtal 5 x 10’ 4 x IO-n IO” 3 x 10-l’ 

H maser 1.4 x IO9 4 x lo-” IO’ 3 x lo-’ 
He-NC laser 5 x 10’. 3 x IO- lo-’ 30 
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approximation of small-phase fluctuations is often 
made. If R,(O) = (c’ a I, one has 

S”(V) = $2 [6(u - Yo) + s&J - vo)] w 

In this approximation the power spectrum consists 
of a carrier at frequency v,, around which the 
spectrum of the phase fluctuations is translated. 

If the frequency of the signal is multiplied by 
n, the mean squared frequency fluctuation becomes 
“‘(0. If n’(p2 a 1, the power spectral density 
is then given by 

S”(V) I T e-J (S(lJ - nwo) + n’S,(v - I+))] (61) 

The power in the carrier decreases, and the power 
in the pedestal increases. The relative powers in 
the carrier PC and in the pedestal P, are then given 
by 

p, I c-7 (62) 

P, = 1 -e-p (63) 

respectively, where +2 represents the mean squared 
value of phase fluctuations at the signal frequency 
considered. It has been proved that (62) and (63) 
are valid, even if the condition 7 < 1 is not 
satisfied (F. Clerc, private communication, 1977). 

Fii. 24. Variation of the rtlotiv~wcr in the carrier P, and 
the pedestal P, as a function of +‘, the mean squared phase 
fluctuations. 

Figure 24 shows the variation of P, and P, as 
a function of 2. One easily understands that the 
carrier may disappear if the multiplicative factor 
is high enough. This has been theoretically and 
experimentally investigated by Walls und de Murchi 
[1975], Bovu er al. [ 197761, and Godone er 41. 
[ 19781. A signal has been synthesized at 761 GHz, 
starting from a ~-MHZ quartz oscillator, which 
verities theoretical conclusions. 

10.3. Other noise processes 

Much work remains to be done to analyze proper- 
ly the effect of noise such as the flicker noise of 
frequency or the random walk of frequency which 
contributes power very close to the carrier. The 
very interesting semiempirical approach by Halford 
[ 197 l] has not yet been justified either theoretically 
or experimentally in a convincing manner. 

I I. CONCLUSION 

Widely used theoretical and experimental meth- 
ods for the characterization of frequency stability 
in the time and frequency domain have been out- 
lined. Recently used or proposed experimental 
methods have been reviewed. The effect of dead 
time on the interpretation of time domain measure- 
ments, as well as on their precision has been 
emphasized. Recently introduced structure func- 
tions have been considered as well as their interest 
for the elimination of frequency drifts. The prob- 
lems in the relation between the radiofrequency 
power spectral density and the power spectral 

density of phase fluctuations have been briefly 
summarized. 
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I. Introduction 

Frequency sources contain noise that appears to be a superposition of 
causally generated signals and random, nondeterministic noises. The random 
noises include thermal noise, shot noise, and noises of undetermined origin 
(such as flicker noise). The end result is timedependent phase and amplitude 
fluctuations. Measurements of these fluctuations characterize the frequency 
source in terms of amplitude modulation (AM) and phase modulation 
(PM) noise (frequency stability). 
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The term frequency srabiliry encompasses the concepts of random noise, 
intended and incidental modulation, and any other fluctuations of the output 
frequency of a device. In general, frequency stability is the degree to which 
an oscillating source produces the same frequency value throughout a 
specified period of time. It is implicit in this general definition of frequency 
stability that the stability of a given frequency decreases if anything except 
a perfect sine function is the signal wave shape. 

Phase noise is the term most widely used to describe the characteristic 
randomness of frequency stability. The term spectral purity refers to the 
ratio of signal power to phase-noise sideband power. Measurements of phase 
noise and AM noise are performed in thefrequency domain using a spectrum 
analyzer that provides a frequency window following the detector (double- 
balanced mixer). Frequency stability can also be measured in the time 
domain with a gated counter that provides a rime window following the 
detector. 

Long-term stability is usually expressed in terms of parts per million per 
hour, day, week, month, or year. This stability represents phenomena 
caused by the aging process of circuit elements and of the material used in 
the frequency-determining element. Short-term stability relates to frequency 
changes of less than a few seconds duration about the nominal frequency. 

Automated measurement systems have been developed for measuring the 
combined phase noise of two signal sources (the two-oscillator technique) 
and a single signal source (the single-oscillator technique), as reported by 
Lance et al. (1977) and Seal and Lance (1981). When two source signals 
are applied in quadrature to a phase-sensitive detector (double-balanced 
mixer), the voltage fluctuations analogous to phasejuctuations are measured 
at the detector output. The single-oscillator measurement system is usually 
designed using a frequency cavity or a delay line as an FM discriminator. 
Voltage fluctuations analogous to frequency j?ucruations are measured at 
the detector output. 

The integrated phase noise can be calculated for any selected range of 
Fourier frequencies. A representation of fluctuations in the frequency 
domain is called spectral density graph. This graph is the distribution of 
power variance versus frequency. 

II. Fundamental Concepts 

In this presentation we shall attempt to conform to the definitions. 
symbols, and terminology set forth by Barnes et al. (1970). The Greek 
letter 1’ represents frequency for carrier-related measures. Modulation- 
related frequencies are designated f. If the carrier is considered as dc, the 
frequencies measured with respect to the carrier are referred to as baseband, 
offset from the carrier, modulation, noise, or Fourier frequencies. 
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M; ,*oo@;: 
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FIG. I Sine wave characteristics: (a) voltage Y changes with time ? as (b) amplitude 
changes with phase angle 4. 

A sine wave generator produces a voltage that changes in time t as the 
amplitude V changes with the phase angle 4. shown in Fig. 1. Phase is mea- 
sured from a zero crossing, as illustrated by plotting the phase angle as the 
radius vector rotates at a constant angular rate determined by the frequency. 
The ideal (perfect) sine-wave-related parameters are as follows: vO, average 
(nominal) frequency of the signal; v(c), instantaneous frequency of a signal 

v(t) = Ts;; & l d4(,); (1) 

Vo, nominal peak amplitude of a signal source output; r, period of an oscilla- 
:ion (l/v,,); Cl, signal (carrier) angular frequency (rate of change of phase 
with time) in radians 

R = 2nv,; (2) 

Rt, instantaneous angular frequency; V(t), instantaneous output voltage 
of a signal. For the ideal sine wave signal of Fig. 1, in volts, 

V(t) = V, sin(2nv, f). (3) 

The basic relationship between phase c$, frequency v,,, and time interval 
r of the ideal sine wave is given in radians by the following: 

f$ = 2nv,s, (4) 

where b(t) is the instantaneous phase of the signal voltage, V(r), defined for 
the ideal sine wave in radians as 

f#J(t) = 2w,t. (5) 
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The instantaneous phase 4(t) of V(t) for the noisy signal is 

&t) = Znv,r + w, (6) 

where 4(r) is the instantaneous phase fluctuation about the ideal phase 
27rv, 5 of Eq. (4). 

The simplified illustration in Fig. 1 shows the sine-wave signal perturbed 
for a short instant by noise. In the perturbed area, the Au and At relation- 
ships correspond to other frequencies, as shown by the dashed-line wave- 
forms. In this sense, frequency variations (phase noise) occur for a given 
instant within the cycle. 

The instantaneous output voltage V(r) of a signal generator or oscillator 
is now 

V(t) = [V, + c(t)] sin[2nv,t + &t)], (7) 

where V, and vO are the nominal amplitude and frequency, respectively, and 
s(r) and &(r) are the instantaneous amplitude and phase fluctuations of the 
signal. 

It is assumed in Eq. (7) that 

e(t),& 6 1 and $),I for all (t), r&t) = dt$/dt. (8) 

Equation (7) can also be expressed as 

V(T) = [V, + h(t)] sin[2nv,r + f& + L@(f)], (9) 

where &, is a constant, 6 is the fluctuations operator, and &s(t) and W(t) 
represent the fluctuations of signal amplitude and phase, respectively. 

Frequency fluctuations bv are related to phase fluctuations br#~, in hertz, by 

bv bR 
1 464) 

z-s 

2n 2ndt’ 
(10) 

i.e., radian frequency deviation is equal to the rate of change of phase devia- 
tion (the first-time derivative of the instantaneous phase deviation). 

The fluctuations of time interval br are related to fluctuations of phase 
84, in radians, by 

&#J = (2nv,)ck (11) 

In the following, y is defined as thefractionalfrequencyPuctuation or fraction- 
al frequency deviation. It is the dimensionless value of 6v normalized to the 
average (nominal) signal frequency vo, 

y = 6v/vo, (12) 
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where J(C) is the instantaneous fractional frequency deviation from the 
nominal frequency vO. 

A. NOISE SIDEBANDS 

Noise sidebands can be thought of as arising from a composite of low- 
frequency signals. Each of these signals modulate the carrier-producing 
components in both sidebands separated by the modulation frequency, as 
illustrated in Fig. 2. The signal is represented by a pair of symmetrical 
sidebands (pure AM) and a pair of antisymmetrical sidebands (pure FM). 

The basis of measurement is that when noise modulation indices are 
small, correlation noise can be neglected. Two signals are uncorrelated if 
their phase and amplitudes have different time distributions so that they do 
not cancel in a phase detector. The separation ofthe AM and FM components 
are illustrated as a modulation phenomenon in Fig. 3. Amplitude fluctuations 
can be measured with a simple detector such as a crystal. Phase or frequency 
fluctuations can be detected with a discriminator. Frequency modulation 
(FM) noise or rms frequency deviation can also be measured with an am- 
plitude (AM) detection system after the FM variations are converted to 
AM variations, as shown in Fig. 3a. The FM-AM conversion is obtained 
by applying two signals in phase quadrature (90”) at the inputs to a balanced 
mixer (detector). This is illustrated in Fig. 3 by the 90” phase advances of 
the carrier. 

B. SPECTRAL DENSITY 

Stability in the frequency domain is commonly specified in terms of spectral 
densities. There are several different, but closely related, spectral densities 
that are relevant to the specification and measurement of stability of the 
frequency, phase, period, amplitude, and power of signals. Concise, tutorial 

V 

RADIAN FREQUENCY 
(al 

CARRIER 

I, V” V 

CARRIER 

RADIAN FREQUENCY RADIAN FREQUENCY 

, (b) Id 

V 

FIG. 2 (a) Carrier and single upper sideband signals; (b) symmetrical sidebands (pure 

AM); (c) an antisymmetrical patr of sldebands (pure FM). 

TN-194 



244 A. L. LANCE, W. D. SEAL, AND F. LABAAR 

FM VARIATION 
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FIG. 3 (a) Relationships of the FM signal to the carrier: (b) relationship of the AM signal 
to the carrier; (c) carrier advanced 90” to obtain FM-AM conversion; (d) AM-FM converslon. 

descriptions of twelve defined spectral densities and the relationships among 
them were given by Shoaf et al. (1973) and Halford et al. (1973). 

Recall that in the perturbed area of the sine wave in Fig. 1 the frequencies 
are being produced for a given instant of time. This amounr of time the signal 
spends in producing another frequency is referred to as the probabilitj, 
den&y of the generated frequencies relative to vo. The frequency domain 
plot is illustrated in Fig. 4. A graph of these probability densities over a period 
of time produces a continuous line and is called the Power spectral dens&y. 
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FIG. 4 A power density plot. 

The spectral density is the distribution of total variance over frequency. The 
units of power spectral density are power per hertz; therefore, a plot of power 
spectral density obtained from amplitude (voltage) measurements requires 
that the voltage measurements be squared. 

The spectral density of power versus frequency, shown in Fig. 4, is a rwo- 
sided spectral density because the range of Fourier frequencies f is from 
minus infinity to plus infinity. 

The notation S,(f) represents the two-sided spectral density of fluctations 
of any specified timedependent quantity g(r). Because the frequency band 
is defined by the two limit frequencies of minus infinity and plus infinity, 
the total mean-square fluctuation of that quantity is defined by 

Glideband = I + m S,(f) df-. -aD (13) 

Two-sided spectral densities are useful mainly in pure mathematical analysis 
involving Fourier transformations. 

Similarly, for the one-sided spectral density, 

Gsidebmd = J +=$,(f) 4 
0 

The two-sided and one-sided spectral densities are related as follows: 

S,, df = 2 

(14) 

(1% 

where g1 indicates one-sided and gz two-sided spectral densities. It is noted 
that the one-sided density is twice as large as the corresponding two-sided 
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spectral density. The terminology for single-sideband versus double-sideband 
signals is totally distinct from the one-sided spectral density versus two- 
sided spectral terminology. They are totally different concepts. The defini- 
tions and concepts of spectral density are set forth in NBS Technical Note 
632 (Shoaf et al., 1973). 

C. SPECTRAL DENSITIES OF PHASE FLUCTUATIONS IN THE * 
FREQUENCY DOMAIN 

The spectral density S,(f) of the instantaneous fractional frequency 
fluctuations J(C) is defined as a measure of frequency stability, as set forth 
by Barnes ef al. (1970). S,(f) is the one-sided spectral density offrequency 
Jluctuarions on a “per hertz” basis,.i.e., the dimensionality is Hz-‘. The 
range of Fourier frequency f is from zero to infinity. S,,(f), in hertz squared 
per hertz. is the spectral density offrequencyfluctuations 6v. It is calculated 
as 

.wf) = 
@hn,)2 

bandwidth used in the measurement of 6v,,’ (16) 

The range of the Fourier frequency f is from zero to infinity. 
The spectral density of phasejucruations is a normalized frequency domain 

measure of phase fluctuation sidebands. S,,(f), in radians squared per 
hertz. is the one-sided spectral density of the phase fluctuations on a “per 
hertz” basis : 

s&l- > = 
wnns 

bandwidth used in the measurement of 84,; (17) 

The power spectral densities of phase and frequency fluctuation are related by 

S,,(f) = (afP,(f). (18) 

The range of the Fourier frequency f is from zero ro injnity. 
S,,(j). in radians squared Hertz squared per hertz is the spectral density 

of angular frequency fluctuations bR: 

%%a-) = (2742&vu-). (1% 

The defined spectral densities have the following relationships: 

S,,,(f) = v;s,(f) = (vn)2s,,(f) = f2S,,(f>; (20) 

L&f) = (l/~)2&df) = wf)2s,u) = &“u-)/f21~ (21) 

Note that Eq. (20) is hertz squared per hertz, whereas Eq. (21) is in radians 
squared per hertz. 

The term S,~r(v), in watts per hertz, is the spectral density of the (square 

8 See Appendix Note # 30 
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root of) radio frequency power P. The power of a signal is dispersed over the 
frequency spectrum owing to noise, instability, and modulation. This con- 
cept is similar to the concept of spectral density of voltage fluctuations 
S,,(f). Typically. S,,(j) is more convenient for characterizing a baseband 
signal where voltage, rather than power, is relevant. SJ;~-(v) is typically 
more convenient for characterizing the dispersion of the signal power in 
the vicinity of the nominal carrier frequency v,,. To relate the two spectral 
densities, it is necessary to specify the impedance associated with the signal. 

A definition of frequency stability that relates the actual sideband power 
of phase fluctuations with respect to the carrier power level, discussed by 
Glaze (1970). is called U(j). For a signal with PM and with no AM, U(j) 
is the normalized version of S,l;?-,(v), with its frequency parameter f refer- 
enced to the signal’s average frequency v,, as the origin such that f equals 
v-v 0. If the signal also has AM, U(f) is the normalized version of those 
portions of S,T~(V) that are phase-modulation sidebands. 

Because f is the Fourier frequency difference (v - vo), the range off is 
from minus v. to plus infinity. Since U(f) is a normalized density (phase 
noise sideband power), 

i 

+m 
L?(f)df = 1. (22) * 

- w 

2’(f) is defined as the ratio of the power in one sideband, referred to the 
input carrier frequency on a per hertz of bandwidth spectral density basis, 
to the total signal power, at Fourier frequency difference f from the carrier, 
per one device. It is a normalized frequency domain measure of phase fluctua- 
tion sidebands, expressed in decibels relative to the carrier per hertz: 

P(f) = 
power density (one phase modulation sideband) 

carrier power (23) 

For the types of signals under consideration, by definition the two phase- 
noise sidebands (lower sideband and upper sideband, at -f and f from vo, 
respectively) of a signal are approximately coherent with each other, and 
they are of approximately equal intensity. 

It was previously show that the measurement of phase fluctuations (phase 
noise) required driving a double-balanced mixer with two signals in phase 
quadrature so the FM-AM conversion resulted in voltage fluctuations at 
the mixer output that were analogous to the phase fluctuations. The opera- 
tion of the mixer when it is driven at quadrature is such that the amplitudes 
of the two phase sidebands are added linearly in the output of the mixer, 
resulting in four times as much power in the output as would be present if 
only one of the phase sidebands were allowed to contribute to the output 

8 See Appendix Note # 31 
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of the mixer. Hence, for ) S ) < vo, and considering only the phase modulation 
portion of the spectral density of the (square root of) power, we obtain 

%4 f I)/( LY = 4PJP(v, + fMP,,,> (24) 

and, using the definition of Y(f), 

Y(f) = Cqm4”o + fM~,oc) = %uI)* (25) 

Therefore, for the condition that the phase fluctuations occurring at rates 
(f) and faster are small compared to one radian, a good approximation in 
radians squared per hertz for one unit is 

U(f) = +s*,(f). (26) 

If the small angle condition is not met, Bessel-function algebra must be used 
to relate Y(f) to S,(f). 

The NBS-defined spectral density is usually expressed in decibels relative 
to the carrier per hertz and is calculated for one unit as 

Wf 1 = 10 h3cG.df)3. (27) 

Ir is very important to note that the theory, definitions, and equations previously 
set forth relate to a single device. 

D. MODULATION THEORY AND SPECTIUL DENSITY 
RELATIONSHIPS 

Applying a sinusoidal frequency modulation fm to a sinusoidal carrier 
frequency v. produces a wave that is sinusoidally advanced and retarded 
in phase as a function of times. The instantaneous voltage is expressed as, 

V(f) = V, sin(2rrv,t + Ac$ sin 2nfmt), (28) 

where A4 is the peak phase deviation caused by the modulation signal. 
The first term inside the parentheses represents the linearly progressing 

phase of the carrier. The second term is the phase variation (advancing and 
retarded) from the linearly progressing wave. The effects of modulation can 
be expressed as residual f, noise or as single-sideband phase noise. For 
modulation by a single sinusoidal signal, the peak-frequency deviation of 
the carrier (vO) is 

Avo = M.fm, (29) 

A4 = Avoifm, (30) 

where,/;, is the modulation frequency. This ratio of peak frequency deviation 
to modulation frequency is called modulation index m so that A# = m and 

m = Avojf,, (31) 
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The frequency spectrum of the modulated carrier contains frequency 
components (sidebands) other than the carrier. F%r small values of modula- 
tion index (m << I), as is the case with random phase noise, only the carrier 
and first upper and lower sidebands are significantly high in energy. The 
ratio of the amplitude of either single sideband to the amplitude of the 
carrier is 

V,,jV, = m/2. (32) 

This ratio is expressed in decibels below the carrier and is referred to as dBc 
for the given bandwidth B: 

VJV, = 20 &c(m/2) = 20 log(Av,,‘2f,) 

= 10 log(m/2)’ = 10 log(Av,l’2f,)‘. (33) 

If the frequency deviation is given in terms of its rms value, then 

Av rms = Av,;J’?. (34) 

Equation (33) now becomes 

WV0 = Y(f) = 2Olog(Av,,j,%5 

= 10 log(Av,,,!&)‘. 
(35) 

The ratio of single sideband to carrier power in decibels (carrier) per hertz is 

g(f) = 20 bi$Av,m/fm) - 3 (36) 

and, in decibels relative to one squared radian per hertz, 

S,,(f) = 20 hWr,s/fm)- (37) 

The interrelationships of modulation index, peak frequency deviation, 
rms frequency, and spectral density of phase fluctuations can be found from 
the following: 

irn = Av0/2f, = Av,,,/J~. (38) 

= lOexp(Y(f)/lO) = $Sdg(f); (39) 

or 

irn = Av,,/,j/zfm = ,/lo exp(Y(f )/lo) = ,/‘ss,,TTT, (40) 

and 

m = blf, = 2 Av,,J& 

= 2J 10 exp(U( f )/lo) = 2Jm. 

The basic relationships are plotted in Fig. 5. 

(41) 
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E. NOISE PROCESSES 

The spectral density plot of a typical oscillator’s output is usually a com- 
bination of different noise processes. It is very useful and meaningful to 
categorize these processes because the first job in evaluating a spectral 
density plot is to determine which type of noise exists for the particular 
range of Fourier frequencies. 

The two basic categories are the discrete-frequency noise and the power-law 
noise process. Discrete-frequency noise is a type of noise in which there is 
a ddminant observable probability, i.e., deterministic in that they can usually 
be related to the mean frequency, power-line frequency, vibration frequencies, 
or ac magnetic fields, or to Fourier components of the nominal frequency. 
Discrete-frequency noise is illustrated in the frequency domain plot of Fig. 6. 
These frequencies can have their own spectral density plots, which can be 
defined as noise on noise. 

Power-law noise processes are types of noise that produce a certain slope 
on the one-sided spectral density plot. They are characterized by their 
dependence on frequency. The spectral density plot of a typical oscillator 
output is usually a combination of the various power-law processes. 

In general, we can classify the power-law noise processes into five categor- 
ies. These five processes are illustrated in Fig. 5, which can be referred to with 
respect to the following description of each process. 

(1) Random walk FM (random walk of frequency). The plot goes down as 
l,‘f*. This noise is usually very close to the carrier and is difficult to measure. 
It is usually related to the oscillator’s physical environment (mechanical 
shock, vibration, temperature, or other environmental effects). 

“0 

i! h 
FIG. 6 A basic discrete-frequency signal display. 
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(2) Flicker FM (flicker of frequency). The plot goes down as l/f3. This 
noise is typically related to the physical resonance mechanism of the active 
oscillator or the design or choice of parts used for the electronic or power 
supply, or even environmental properties. The time domain frequency 
stability over extended periods is constant. In high-quality oscillators, this 
noise may be marked by white FM (l/f’) or flicker phase modulation 
@4 (Id). It may be masked by drift in low-quality oscillators. 

(3) White FM (white frequency, random walk of phase). The plot goes 
down as l/f’. A common type of noise found in passive-resonator frequency 
standards. Cesium and rubidium frequency standards have white FM noise 
characteristic because the oscillator (usually quartz) is locked to the reso- 
nance feature of these devices. This noise gets better as a function of time 
until it (usually) becomes flicker FM (l/f’) noise. 

(4) Flicker $M (flicker modulation of phase). The plot goes down as 
l/c This noise may relate to the physical resonance mechanism in an oscil- 
lator. It is common in the highest-quality oscillators. This noise can be 
introduced by noisy electronics-amplifiers necessary to bring the signal 
amplitude up to a usable level-and frequency multipliers. This noise can 
be reduced by careful design and by hand-selecting all components. 

(5) White 4M (white phase). White phase noise plot is flat f”. Broadband 
phase noise is generally produced in the same way as flicker 4M (l/f). Late 
stages of amplification are usually responsible. This noise can be kept low 
by careful selection of components and by narrow-band filtering at the output. 

The power-law processes are illustrated in Fig. 5. 

F. INTEGRATED PHASE NOISE 

The integrated phase noise is a measure of the phase-noise contribution 
(rms radians, rms degrees) over a designated range of Fourier frequencies. 
The integration is a process of summation that must be performed on the 
measured spectral density within the actual IF bandwidth (B) used in the 
measurement of S$,,, . Therefore, the spectral density S,(f) must be un- 
normalized to the particular bandwidth used in the measurement. Define 
S,(f), in radians squared, as the unnormalized spectral density: 

S,(f) = 2[10 exp(.Y(f) + 10 log B)/lO]. (42) 

Then, the integrated phase noise over the band of Fourier frequencies (f, tof.) 
where measurements are performed using a constant IF bandwidth, in radians 
squared, is 

&LA to fn> = j-I” &(f 1 dJ (43) 
II 
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or, in rms radians, 

and the integrated phase noise in rms degrees is calculated as 

S,( 360/2x). (45) 

The integrated phase noise in decibels relative to the carrier is calculated as 

SB = 10 log()s:). (46) 

The previous calculations correspond to the illustration in Fig. 7, which 
includes two bandwidths (Bl and B2) over two ranges of Fourier frequencies. 

In the measurement program, different IF bandwidths are used as set 
forth by Lance er al. (1977). The total integrated phase noise over the differ- 
ent ranges of Fourier frequencies, which are measured at constant band- 
widths as illustrated, is calculated in rms radians as follows: 

S 
I 

BlOl = dSB# + (s,,)’ + . . . + (s,)Z, (47) 

where it is recalled that the summation is performed in terms of radians 
squared. 

f 

FIG. 7 Integrated phase noise over Fourier frequency ranges at which measurements 
were performed using constant bandwidth. 
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G. AM NOISE IN THE FREQUENCY DOMAIN 

The spectral density of AM fluctuations of a signal follows the same 
general derivation previously given for the spectral density of phase flucta- 
tions. Amplitude fluctuations & of the signal under test produces voltage 
fluctuations 6A at the output of the mixer. Interpretating the mean-square 
fluctuations & and 6 in spectal density fashion, we obtain S,,(f), the spectral 
density of amplitude fluctuations be of a signal in volts squared per hertz: 

S,,(f) = cf v,)2C&“LfwLns)21. 

The term m(f) is the normalized version of the amplitude modulation (AM) 
portion of S,;?-,(Y), with its frequency parameter f referenced to the signal’s 
average frequency Y,, , taken as the origin such that the difference frequency 
fequals v - v,,. The range of Fourier frequency difference f is from minus 
rO to plus infinity. 

The term m(f) is defined as the ratio of the spectral density ofone amplicude- 
inodulated sideband to the total signal power, at Fourier frequency difference 
f from the signal’s average frequency v,, , for a single specified signal or device. 
The dimensionality is per hertz. U(f) and m(f) are similar functions; the 
former is a measure of phase-modulated (PM) sidebands, the later is a cor- 
responding measure of amplitude-modulated (AM) sidebands. We introduce 
the symbol m(f) to have useful terminology for the important concept of 
normalized AM sideband power. 

For the types of signals under consideration, by definition the two ampli- 
tude-fluctuation sidebands (lower sideband and upper sideband, at -f 
f from vo, respectively) of a signal are coherent with each other. Also, they 
are of equal intensity. The operation of the mixer when it is driven at colinear 
phase is such that the amplitudes of the two AM sidebands are added linearly 
in the output of the mixer, resulting in four times as much power in the output 
as would be present if only one of the AM sidebands were allowed to contri- 
bute to the output of the mixer. Hence, for ) f) < vo, 

S,(l f lYC%,,)2 = 4CS3v(vo + f W~m9 

and, using the definition 

we find, in decibels (carrier) per hertz, 

4f) = (1/2~3UIf I). (51) 
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III. Phase-Noise Measurements Using the Two-Oscillator * 
Technique 

A functional block diagram of the two-oscillator system for measuring 
phase noise is shown in Fig. 8. NBS has performed phase noise measurements 
since 1967 using this basic system. The signal level and sideband levels can 
be measured in terms of voltage or power. The low-pass filter prevents local 
oscillator leakage power from overloading the spectrum analyzer when 
baseband measurements are performed at the Fourier (offset) frequencies 
of interest. Leakage signals will interfere with autoranging and with the 
dynamic range of the spectrum analyzer. 

The low-noise, high-gain preamplifier provides additional system sensi- 
tivity by amplyfying the noise signals to be measured. Also, because spectrum 
analyzers usually have high values of noise figure, this amplifier is very de- 
sirable. As an example, if the high-gain preamplifier had a noise figure of 
3 dB and the spectrum analyzer had a noise figure of 18 dB, the system sensi- 
tivity at this point has been improved by 15 dB. The overall system sensitivity 
would not necessarily be improved 15 dB in all cases, because the limiting 
sensitivity could have been imposed by a noisy mixer. 

NOISY SIGNAL 

OSCILLATOR 
UNDER TEST 

PHASE SHIFTER 

SMALL 
FLUCTUATIONS 

fTHlS IS THE QUANTITY 
TO BE MEASURED) 

11_1 
NOISE ONLY 

LOW-PASS - 
FILTER 

l 

f 
SPECTRUM 
ANALYZER 

b 

LOW-NOISE 
AMPLIFIER 

REFERENCE NO NOISE 
OSCILLATOR 

FIG. 8 The two-oscillator technique for measuring phase noise. Small fluctuations from 
nominal voltage are equivalent to phase variations. The phase shifter adjusts the two signals 
to quadrature in the mixer, which cancels carriers and converts phase noise to fluctuating dc 
voltage. 

8 See Appendix Note # 6 
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Assume that the reference oscillator is perfect (no phase noise), and that it 
can be adjusted in frequency. Also, assume that both oscillators are extremely 
stable, so that phase quadrature can be maintained without the use of an 
external phase-locked loop or reference. The double-balanced mixer acts 
as a phase detector so that when two input signals are identical in frequency 
and are in phase quadrature, the output is a small fluctuating voltage. This 
represents the phase-modulated (PM) sideband component of the signal 
because, due to the quadrature of the signals at the mixer input, the mixer 
converts the amplitude-modulated (AM) sideband components to FM, and 
at the same time it converts the PM sideband components to AM. These 
AM components can be detected with an amplitude detector, as shown in 
Fig. 3. 

If the two oscillator signals applied to the double-balanced mixer of Fig. 8 
are slightly out of zero beat, a slow sinusoidal voltage with a peak-to-peak 
voltage I/ptp can be measured at the mixer output. If these same signals 
are returned to zero beat and adjusted for phase quadrature, the output of 
the mixer is a small fluctuating voltage (au) centered at zero volts. If the 
fluctuating voltage is small compared to 4 I$,,,, the phase quadrature con- 
dition is being closely maintained and the “small angle” condition is being 
met. Phase fluctuations in radians between the test and reference signals 
(phases) are 

w = 6(4, - 4,). (52) 

These phase fluctuations produce voltage fluctuations at the output of the 
mixer, 

&I = i vp,p w, (53) 

where phase angles are in radian measure and sin S# = S# for small 84 
(64 Q 1 rad). Solving for 64, squaring both sides, and taking a time average 
gives 

(@4)2 > = 4((W2 >/( I$,)‘, (54) 

where the angle brackets represent the time average. 

For the sinusoidal beat signal, 

( J&J2 = W’nd2~ (53 

The mean-square fluctuations of phase S4 and voltage 60 interpreted in a 
spectral density fashion gives the following in radians squared per hertz: 

S,(f) = &u-)/wrm,)2. (56) 

Here, S,,(f), in volts squared per hertz, is the spectral density of the voltage 
fluctuations at the mixer output. Because the spectrum analyzer measures 
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rms voltage, the noise voltage is in units of volts per square root hertz, which 
means volts per square root bandwidth. Therefore, 

uf) = C~%J~l = (&d2/& (57) 
where B is the noise power bandwidth used in the measurement. 

Because it was assumed that the reference oscillator did not contribute any 

noise, the voltage fluctuations ulms represent the oscillator under test, and 
the spectral density of the phase fluctuations in terms of the voltage measure- 
ments performed with the spectrum analyzer, in radians squared per hertz, is 

S,,(f) = i c(~~rIns>2:~( Kns>21. (58) 

Equation (46) is sometimes expressed as 

Sk&-> = s,“ml~2~ (59) 

where K is the calibration factor in volts per radian. For sinusoidal beat 
signals, the peak voltage of the signal equals the slope of the zero crossing 
in volts per radian. Therefore, (VP)’ = 2(V,,,)‘, which is the same as the 
denominator in Eq. (56). 

The term S,,(f) can be expressed in decibels relative to one square radian 
per hertz by calculating 10 log S,,(f) of the previous equation: 

S,,(f) = 20 log(&,,,) - 20 log(&) - 10 log(B) - 3 (60) 

A correction of 2.5 is required for the tracking spectrum analyzer used in 
these measurement systems. U(f) differs by 3 dB and is expressed in decibels 
(carrier) per hertz as 

9(f) = 20 log(bu,,,) - 20 log( I$.,,,) - 10 log(B) - 6. (61) 

A. Two NO~SY~SC~LLATORS 

The measurement system of Fig. 6 yields the output noise from both 
oscillators. If the reference oscillator is superior in performance as assumed 
in the previous discussions, then one obtains a direct measure of the noise 
characteristics of the oscillator under test. 

If the reference and test oscillators are the same type, a useful approxima- 
tion is to assume that the measured noise power is twice that associated 
with one noisy oscillator. This approximation is in error by no more than 
3 dB for the noisier oscillator, even if one oscillator is the major source of 
noise. The equation for the spectral density of measured phase Huctuations 
in radians squared per hertz is 

s,,(f~)l#, + sdf)l#2 = Isdf)l.wode”i..,, + wLJL t /zs,d/)~(o”ede”ice, 

(62) 
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The measured value is therefore divided by two to obtain the value for the 
single oscillator. A determination of the noise of each oscillator can be made 
if one has three oscillators that can be measured in all pair combinations. 
The phase noise of each source 1, 2, and 3 is calculated as follows: 

U,(f) = 10 ~og[+(lo”“‘/“lo + 1()4913tf)/lo _ 1()923(Jwo)], (63) 
p(f) = 10 log[+(l(-J’“‘/“10 + 1()Y23m/lo _ 10913m’10)], 

(64) 

p(f) = 10 log[L#)‘L”/“‘O + ]()Y23U)/lO _ 1(-JYl2UV10)]~ (65) 

B. AUTOMATED PHASE-NOISE MEASUREMENTS USING THE 

TWO-OSCILLATOR TECHNIQUE 

The automated phase-noise measurement system is shown in Fig. 9. It is 
controlled by a programmable calculator. Each step of the calibration and 
measurement sequence is included in the program. The software program 
controls frequency slection, bandwidth settings, settling time, amplitude 
ranging, measurements, calculations, graphics, and data plotting. Normally, 
the system is used to obtain a direct plot of Y(f). The integrated phase noise 
can be calculated for any selected range of Fourier frequencies. 

A quasi-continuous plot of phase noise performance U(f) is obtained 
by performing measurements at Fourier frequencies separated by the IF 
bandwidth of the spectrum analyzer used during the measurement. Plots of 
other defined parameters can be obtained and plotted as desired. 

The IF bandwidth settings for the Fourier (offset) frequency-range 
selections are shown in the following tabulation: 

IF Fourier 
bandwidth frequency 

(Hz) (kHz) 

IF 
bandwidth 

W-M 

Fourier 
frequency 

(kHz) 

3 0.001-0.4 I 40-100 
IO 0.4-I 3 100-400 
30 14 10 400-1300 

100 4-10 
200 10-40 

The particular range of Fourier frequencies is limited by the particular 
spectrum analyzer used in the system. A fast Fourier analyzer (FFT) is also 
incorporated in the system to measure phase noise from submiIlihertz to 
25 kHz. 

High-quality sources can be measured without multiplication to enhance 
the phase noise prior to downconverting and measuring at baseband fre- 
quencies. The measurements are not completely automated because the 

calibration sequence requires several manual operations. 
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OSCILLATOR UNDER TEST 

I I I I 

11 osc~LLoSCoPEj pREAMpL,F,Eij :KLYZER /-j 
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PHASE-LOCKED LOOP l \ I------ 

.I 

FIG. 9 An automated phase-noise measurement system. 

C. CALIBRATION AND MEASUREMENTS USING THE 

TWO-OSCILLATOR SYSTEM 

L?(f) is a normalized frequency domain measure of phase-fluctuation side- 
band power. The noise power is measured relative to the carrier power 
level. Correction must be applied because of the type of measurement and 
the characteristics of the measurement equipment. The general procedure 
for the calibration and measurement sequence includes the following: 
measuring the noise power bandwidth for each IF bandwidth setting on the 
Tracking Spectrum Analyzer (Section III.C.l); establishing a carrier refer- 
ence power level referenced to the output of the mixer (Section 1II.C.Z); 
obtaining phase quadrature of the two signals applied to the mixer (Section 
III.C.3); measuring the noise power at the selected Fourier frequencies 
(Section III.C.4); performing the calculations and plotting the data (Section 
III.C.5); and measuring the system noise floor characteristics, usually re- 
ferred to as the system sensitivity. 

1. ,Voise-Power Bandwidth 

Approximations of analyzer-noise bandwidths are not adequate for phase 
noise measurements and calculations. The IF noise-power bandwidth of the 
tracking spectrum analyzer must be known and used in the calculations of 
phase noise parameters. Figure 10 shows the results of measurements per- 
formed using automated techniques. For example, with a l-MHz signal 
input to the tracking spectrum analyzer, the desired incremental frequency 
changes covering the IF bandwidth are set by calculator control. 
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d8 
-20 - 

~-HZ BANDWIDTH 

NOISE BANDWIDTH: 3.251 Hz 

FREQUENCY 

FIG. 10 Plot of automated noise-power bandwidth. 

The spectrum analyzer power output is recorded for each frequency setting 
over the range, as illustrated in Fig. 10. The 40-dB level and the 100 incre- 
ments in frequency are not the minimum permissible values. The recorded 
can be plotted for each IF bandwidth, as illustrated, and the noise-power 
bandwidth is calculated in hertz as 

noise power bandwidth = 
(Pt + P, + P, + ... + PI”) Af 

peak power reading ’ (66) 

where Afis the frequency increment in hertz and the peak power is the maxi- 
mum measured point obtained during the measurements. All power values 
are in watts. 

7 A. Setting the Carrier Power Reference Level 

Recall from Section III.6 that for sinusoidal signals the peak voltage of 
the signal equals the slope of the zero crossing, in volts per radian. A frequency 
offset is established, and the peak power of the difference frequency is mea- 
sured as the carrier-power reference level; this establishes the calibration 
factor of the mixer in volts per radian. 

Because the precision IF attenuator is used in the calibration process, one 
must be aware that the impedance looking back into the mixer should be 
50 R. Also, the mixer output signal should be sinusoidal. Fischer (1978) 
discussed the mixer as the “critical element” in the measurement system. 
It is advisable to drive the mixer so that the sinusoidal signal is obtained 
at the mixer output. In most of the TRW systems, the mixer drive levels are 
10 dBm for the reference signal and about zero dBm for the unit under test. 

TN-211 



7. PHASE NOISE AND AM NOISE MEASUREMENTS 261 

System sensitivity can be increased by driving the mixer with high-level 
signals that lower the mixer output impedance to a few ohms. This presents 
a problem in establishing the calibration factor of the mixer, because it 
might be necessary to calibrate the mixer for different Fourier frequency 
ranges. 

The equation sensitivity = slope = beat-note amplitude does not hold 
if the output of the mixer is not a sine wave. The Hewlett-Packard 3047 
automated phase noise measurement system allows accurate calibration 
of the phase-detector sensitivity even with high-level inputs by using the 
derivative of the Fourier representation of the signal (the fundamental and 
its harmonics). The slope at 4 z 0 radians is given by 

A sin 4 - B sin 34 + C sin 54 = A cos 4 - 3E cos 34 + 5C cos 54 

= A- 3B + SC + ’ *. . (67) 

Referring to Fig. 9, the carrier-power reference level is obtained as follows. 

(1) The precision IF step attenuator is set to a high value to prevent 
overloading the spectrum analyzer (assume 50 dB as our example). 

(2) The reference and test signals at the mixer inputs are set to approxi- 
mately 10 dBm and 0 dBm, as previously discussed. 

(3) If the frequency of one of the oscillators can be adjusted, adjust its 
frequency for an IF output frequency in the range of 10 to 20 kHz. If neither 
oscillator is adjustable, replace the oscillator under test with one that can 
be adjusted as required and that can be set to the identical power level of the 
oscillator under test. 

(4) The resulting IF power level is measured by the spectrum analyzer, 
and the measured value is corrected for the attentuator setting, which was 
assumed to be 50 dB. The correction is necessary because this attenuator 
will be set to its zero decibel indication during the measurements of noise 
power. Assuming a spectrum analyzer reading of -40 dBm, the carrier- 
power reference. level is calculated as 

carrier power reference level = 50 dB - 40 dBm = 10 dBm. (68) 

3. Phase Quadrature of the Mixer Input Signals 

After the carrier-power reference has been established, the oscillator under 
test and the reference oscillator are tuned to the same frequency, and the 
original reference levels that were used during calibration are reestablished. 
The quadrature adjustment depends on the type of system used. Three 
possibilities, illustrated in Fig. 9, are described here. 

(I) If the oscillators are very stable, have high-resolution tuning, and are 
not phase-locked, the frequency of one oscillator is adjusted for zero dc 
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voltage output of the mixer as indicated by the sensitive oscilloscope. 
Note: Experience has shown that the quadrature setting is not critical if the 
sources have low AM noise characteristics. As an example, experiments 
performed using two HP 3335 synthesizers showed that degradation of the 
phase-noise measurement became noticeable with a phase-quadrature 
offset of 16 degrees. 

(2) If the common reference frequency is used, as illustrated in Fig. 9. then 
it is necessary to include a phase shifter in the line between one of the oscil- 
lators and the mixer (preferably between the attenuator and mixer). The 
phase shifter is adjusted to obtain and maintain zero volts dc at the mixer 
output. A correction for a nonzero dc value can be applied as exemplified by 
the HP 3047 automated phase-noise measurement system. 

(3) If one oscillator is phase-locked using a phase-locked loop, as shown 
dotted in on Fig. 9, the frequency of the unit under test is adjusted for zero 
dc output of the mixer as indicated on the oscilloscope. 

A phase-locked loop is a feedback system whose function is to force a 
voltage-controlled oscillator (VCO) to be coherent with a certain frequency, 
i.e.. it is highly correlated in both frequency and phase. The phase detector 
is a mixer circuit that mixes the input signal with the VCO signal. The mixer 
output is vi + rO. when the loop is locked. the VCO duplicates the input 
frequency so that the difference frequency is zero, and the output is a dc 
voltage proportional to the phase difference. The low-pass filter removes 
the sum frequency component but passes the dc component to control the 
VCO. The time constant of the loop can be adjusted as needed by varying 
amplifier gain and RC filtering within the loop. 

A loose phase-locked loop is characterized by the following. 

( 1) The correction voltage varies as phase (in the short term) and phase 
variations are therefore observed directly. 

(2) The bandwidth of the servo response is small compared with the 
Fourier frequency to be measured. 

(3) The response time is very slow. 

A tight phase-locked loop is characterized by the following. 

(1) The correction voltage of the servo loop varies as frequency. 
(2) The bandwidth of the servo response is relatively large. 
(3) The response time is much smaller than the smallest time interval T 

at which measurements are performed. 

Figure 11 shows the phase-noise characteristics of the H.P. 86408 synthe- 
sizer measured at 512 MHz. The phase-locked-loop attenuation character- 
istics extend to 10 kHz. The internal-oscillator-source characteristics are 
plotted at Fourier frequencies beyond the loop-bandwidth cutoff at 10 kHz. 
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FIG. I I Phase-locked-loop characteristics of the H.P. 86408 signal generator. showing 
the normalized phase-noise sldeband power spectral density. 

4. Measurements, Calculations. and Data Plots 

The measurement sequence is automated except for the case where manual 
adjustments are required to maintain phase quadrature of the signals. After 
phase quadrature of the signals into the mixer is established, the IF atten- 
uator is returned to the zerodecibel reference setting. This attenuator is 
set to a high value [assumed to be 50 dB in Eq. (65)] to prevent saturation 
of the spectrum analyzer during the calibration process. 

The automated measurements are executed, and the direct measurement 
and data plot of U(f) is obtained in decibels (carrier) per hertz using the 
equation 

af-> = - [carrier power level - (noise power level - 6 + 2.5 

- 10 log B - 3)]. (69) 

The noise power (dBm) is measured relative to the carrier-power level 
(dBm), and the remaining terms of the equation represent corrections that 
must be applied because of the type of measurement and the characteristics 
of the measurement equipment, as follows. 

(1) The measurement of noise sidebands with the signals in phase 
quadrature requires the -6dB correction that is noted in Eq. (69). 

(2) The nonlinearity of the spectrum analyzer’s logarithmic IF amplifier 
results in compression of the noise peaks which, when average-detected, 
require the 2.5dB correction. 

(3) The bandwidth correction is required because the spectrum analyzer 
measurements of random or white noise are a function of the particular 
bandwidth used in the measurement. 

TN-2 14 



264 A. L. LANCE, W. D. SEAL, AND F. LABAAR 

(4) The - 3-dB correction is required because this is a direct measure of 
Y(f) of rwo oscillators, assuming that the oscillators are of a similar type 
and that the noise contribution is the same for each oscillator. If one oscil- 
lator is sufficiently superior to the other, this correction is not required. 

Other defined spectral densities can be calculated and plotted as desired. 
The plotted or stored value of the spectral density of phase fluctuations 
in decibels relative to one square radian (dBc rad’/Hz) is calculated as 

S,,(f) = an + 3. (70) 

The spectral density of phase fluctuations, in radians squared per hertz, is 
calculated as 

Wf) = 10 ev&&fWO), (71) 

The spectral density of frequency fluctuations, in hertz squared per hertz, is 

Wf) = f%m (72) 

where S,,(F) is in decibels with respect to 1 radian. 

5. System Noise Floor Verification 

A plot of the system noise floor (sensitivity) is obtained by repeating the 
automated measurement procedures with the system modified as shown in 
Fig. 12. Accurate measurements can be obtained using the configuration 
shown in Fig. 12a. The reference source supplies 10 dBm to one side of the 
mixer and 0 dBm to the other mixer input through equal path lengths; 
phase quadrature is maintained with the phase shifter. 

@------50-R 
TERMINATION 

(a) lb) 

FIG. I2 System configurations for measurmg the system noise floor (sensitivity): (a) 
contiguration used for accurate measurements: (b) alternate configuration sometimes used. 
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The configuration shown in Fig. 12b is sometimes used and does not 

greatly degrade the noise floor because the reference signal of 10 dBm is 
larger than the signal frequency. See Sections 1V.B and IV.C.4 for additional 
discussions related to system sensitivity and recommended system evaluation. 

Proper selection of drive and output termination of the double-balanced 
mixer can result in improvement by 15 to 25 dB in the performance of phase- 
noise measurements, as discussed by Wails et al. (1976). The beat frequency 
between the two oscillators can be a sine wave, as previously mentioned, 
with proper low drive levels. This requires a proper terminating impedance 
for the mixer. With high drive levels, the mixer output waveform will be 
clipped. The slope of the clipped waveform at the zero crossings, illustrated 
by Walls et al. (1976), is twice the slope of the sine wave and therefore im- 
proves the noise floor sensitivity by 6 dB, i.e., the output signal, proportional 
to the phase fluctuations, increases with drive level. This condition of clipping 
requires characterization over the Fourier frequency range, as previously 
mentioned for the Hewlett-Packard 3047 phase noise measurement system. 
An amplifier can be used to increase the mixer drive levels for devices that 
have insufficient output power to drive the double-balanced mixers. 

Lower noise floors can be achieved using high-level mixers when available 
drive levels are sufficient. A step-up transformer can be used to increase 
the mixer drive voltage because the signal and noise power increase in the 
same ratio, and the spectral density of phase of the device under test is un- 
changed, but the noise floor of the measurement system is reduced. 

Walls et al. (1976) used a correlation technique that consisted primarily 
of two phase-noise measurement systems. At TRW the technique is used as 
shown in Fig. 13. The cross spectrum is obtained with the fast Fourier 
transform (FFT) analyzer that performs the product of the Fourier trans-- 
form of one signal and the complex conjugate of the Fourier transform of 

DUAL- 
CHANNEL 
FFT 

i 

FIG. 13 Cross-spectrum measurement using the two-oscillator technique. 
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the second signal. This cross spectrum, which is a phase-sensitive character- 
istic, gives a phase and amplitude sensitivity measure directly. A signal- 
to-noise enhancement greater than 20 dB can be achieved. 

If the double-balanced phase noise measurement system does not provide 
a noise floor sufficient for measuring a high-quality source. frequency 
multiplier chains can be used if their inherent noise is lo-20 dB below the 
measurement system noise. In frequency multiplication the noise increases 
according to 

10 log(fina1 frequency/original frequency). (73) * 

B r 

- 
10 102 103 104 106 106 

FOURIER FREQUENCY IHI) 

(al 

-160 

FIG. 14 Data plots of the automated phase-noise measurement system: (a) a high quality 
S-MHz quartz oscillator; (b) combined noise of two H.P. 8662A synthesizers (subtract 3 dB 
for a single unit). 

8 See Appendix Note X 32 
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The following equation is used to correct for noise-floor contribution 
Pnr, in dBc!Hz, if desired or necessary: 

Y(f)(corrected) = -U(f) + 10 log [P,,;;--;nf] 

The correction for noise-floor contribution can also be obtained by using 
the measurement of S,,(f) of Eq. (57). Measurement of S&J’) of the oscillator 
plus floor is obtained, then S,,(f) is obtained for the noise floor only. Then, 

S,“(f) (ror = S,“(f) /lo,c+nfl - S,“u-) l”f (75) 

Figure 14a shows a phase noise plot of a very high-quality (~-MHZ) 
quartz oscillator, measured by the two-oscillator technique. The sharp 
peaks below 1000 Hz represent the 60-Hz line frequency of the power supply 
and its harmonics and are not part of the oscillator phase noise. Figure 14b 
shows measurements to 0.02 Hz of the carrier at a frequency of 20 MHz. 

IV. Single-Oscillator Phase-Noise LMeasurement Systems and * 
Techniques 

The phase-noise measurements of a single-oscillator are based on the 
measurement of jkequency jhctuations using discriminator techniques. The 
practical discriminator acts as a filter with finite bandwidth that suppresses 
the carrier and the sidebands on both sides of the carrier. The ideal carrier- 
suppression filter would provide infinite attentuation of the carrier and 
zero attenutation of all other frequencies. The effective Q of the practical 
discriminator determines how much the signals are attenuated. 

Frequency discrimination at very high frequencies (VHF) has been ob- 
tained using slope detectors and ratio detectors, by use of lumped circuit 
elements of inductance and capacitance. At ultrahigh frequencies (UHF) 
between the VHF and microwave regions, measurements can be performed 
by beating, or heterodyning, the UHF signal with a local oscillator to obtain 
a VHF signal that is analyzed with a discriminator in the VHF frequency 
range. Those techniques provide a means for rejecting residual amplitude- 
modulated (AM) noise on the signal under test. The VHF discriminators 
usually employ a limiter or ratio detector. 

Ashley et al. (1968) and Ondria (1968) have discussed the microwave 
cavity discriminator that rejects AM noise, suppresses the carrier so that the 
input level can be increased, and provides a high discriminated output to 
improve the signal-to-noise floor ratio. The delay line used as an FM dis- 
criminator has been discussed by Tykulsky (1966), Halford (1975), and 

* See Appendix Note # 6 
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FIG. 15 Single-oscillator phase-noise measurement techniques: (a) cavity discriminator; 
(b) reflective-type delay-hne dlscrlmmator; (c) one-way delay hne. 

Ashley et al. (1968). Ashley et al. (1968) proposed the reflective-type delay- 
line discriminator shown in Fig. 15b. The cavity can also be used to replace 
delay line. The one-way delay line shown in Fig. 1% is implemented in the 
TRW measurement systems. The theory and applications set forth in this 
section are based on a system of this particular type. 

A. THE DELAY LINE AS AN FM DISCRIMINATOR 

1. The Single-Oscillator Measurement System 

The single-oscillator signal is split into two channels in the system shown 
in Fig. 15. One channel is called the nondelay or reference channel. It is also 
referred to as the local-oscillator (LO) channel because the signal in this 
channel drives the mixer at the prescribed impedance level (the usual LO 
drive). The signal in the second channel arrives at the mixer through a delay 
line. The two signals are adjusted for phase quadrature with the phase 
shifter, and the output of the mixer is a fluctuating voltage, analogous to the 
frequency fluctuations of the source, centered on approximately zero dc 
volts. 

The delay line yields a phase shift by the time the signal arrives at the 
balanced mixer. The phase shift depends on the instantaneous frequency of 
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the signal. The presence of frequency modulation (FM) on the signal gives 
rise to differential phase modulation (PM) at the output of the differential 
delay and its associated (nondelay) reference line. This relationship is linear 
if the delay ~~ is nondispersive. This is the property that allows the delay line 
to be used as an FM discriminator. In general, the conversion factors are a 
function of the delay (sd) and the Fourier frequency f but not of the carrier 
frequency. 

The differential phase shift of the nominal frequency vO caused by the delay 
line is 

AC$I = 2nv, Td, (76) 

where ?d is the time delay. 
The phase fluctuations at the mixer are related to the frequency fluctuations 

(at the rate f) by 

&$ = 2nT,6V(f). (77) 

The spectral density relationships are 

MS 1 = (2’&)2 s,,(f) (78) 
mixer OSE 

and 

Then, 

S,,(f) = f2 S,,(f). (79) 

%b(f) = mki)2 S,,(f) (80) 
dlm OS.2 

where the subscript dlm indicates delay-line method. From Eq. (56), the 
spectral density of phase for the two-oscillator technique, in radians squared 
per hertz, is 

because 

and 

per hertz. 

S&&f 1 = 4 S,“(f) 
cv,,,>’ 

= 7 -L(f) = 
8 Km> 

[ m,,>2 1 
3 I/,,,)B 

(81) 

<VP,,>’ = 8h,,,)2 = WJ2 = 4C2@~,,,)~1 

-wf) = W,,(f)/(&J2) = b%&vLJ2~ (82) 
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The sensitivity (noise floor) of the two-oscillator measurement system 
includes the thermal and shot noise of the mixer and the noise of the base- 
band preamplifier (referred to its input). This noise floor is measured with 
the oscillator under test inoperative. The measurement system sensitivity of 
the two-oscillator system, on a per hertz density basis (dBc/Hz) is 

Wf)nr = 10 logc2(~~“)2/(1/,,,)21. (83 

where SC, is the rms noise voltage measured in a one-hertz bandwidth. 
The two-oscillator system therefore yields the output noise from both 

oscillators. If the reference oscillator is superior in performance, as assumed 
in the previous discussions, then one obtains a direct measure of the noise 
characteristics of the oscillator under test. If the reference and test oscillators 
are the same type, a useful approximation is to assume that the measured 
noise power is twice that associated with one noisy oscillator. This approxi- 
mation is in error by no more than 3 dB for the noisier oscillator. Substituting 
in Eq. (80) and using the relationships in Eq. (56) we have, per hertz, 

=wf) = 2c(~~,,,)2/(~~/p,,)21(2~f~d)2 (84) 
dim 

Examination of this equation reveals the following. 

(1) The term in the brackets represents the two-oscillator response. 
Note that this term represents the noise jloor of the two-oscillator method. 
Therefore, adoption of the delay-line method results in a higher noise by the 
factor (2nf?d)2 when compared with the two-oscillator measurement method. 
The sensitivity (noise floor) for delay lines with different values of time delay 
are illustrated in Fig. 17. 

(2) Equation (84) also indicates that the measured value of U(f) is 
periodic in w = 2x5 This is shown in Fig. 21. The first null in the responses 
is at the Fourier frequency f = l/7,, The periodicity indicates that the cali- 
bration range of the discriminator is limited and that valid measurements 
occur only in the indicated range. as verified by the discriminator slope shown 
in Fig. 16. (See Fig. 23.) 

(3) The maximum value of (2nfrd)2 can be greater than unity (it is 4 at 
f = 1 ‘27,). This 6-dB advantage is utilized in the noise-floor measurement. 
However, it is beyond the valid calibration range of the delay-line system. 
The 6-dB advantage is offset by the line attenuation at microwave frequencies, 
as discussed by Halford (1975). 

The delay-line discriminator system has been analyzed in terms of a power- 
limited system (a particular idealized system in which the choice of power 
oscillator voltage, the attenuator of the delay line, and the conversion loss 
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of the mixer are limited by the capability of the mixer) by Tykulsky (1966). 
Halford (1975), and Ashley et al. (1977). For this particular case, Eq. (83) 
indicates that an increase in the length of the delay line (to increase r,, for 
decorrelation of Fourier frequencies closer to the carrier) results in an 
increase in attenuation of the line, which causes a corresponding decrease 
in I&. The optimum length occurs where rd is such that the decrease in 
VP,, is approximately compensated by the increase in (211fTd), i.e., where 

d W-G o 
--= . _. (85) \ , 

This condition occurs where the attenuation of the delay line is 1 Np 
(8.686 dB). However, when the system is not power limited, the attenuation 
of the delay line is not limited, because the input power to the delay line can 
be adjusted to maintain VPIP at the desired value. The optimum delay-line 
length is determined at a particular selectable frequency. However, since 
the attenuation varies slowly (approximately proportional to the square root 
of frequency), this characteristic allows near-optimum operation over a 
considerable frequency range without appreciable degradation in the 
measurements. 

A practical view of the time delay (rd) and Fourier-frequency functional 
relationship can be obtained by reviewing the basic concepts of the dual- 
channel time-delay measurement system discussed by Lance (1964). If the 
differential delay between the two channels is zero, there is no phase differ- 
ence at the detector output when a swept-frequency cw signal is applied 
to the system. Figure 16 shows the detected output interference display when 
a swept-frequency cw signal (zero to 4 MHz) is applied to a system that has 

f=4MHz 

f=2MHr 

FIG. 16 Swept-frequency interference display at the output of a dual-channel system 
with a differential delay of 500 nscc. 
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a differential delay of 500 nsec between the two channels. The signal ampli- 
tudes are assumed to be almost equal, thus producing the familiar voltage- 
standing-wave pattern or interference display. Because this is a two-channel 
system, there is a null every 360”, as shown. 

2. System Sensitidy (Noise Floor) When Using the 
Dtflerenrial De+Line Technique 

Halford (1975) has shown that the sensitivity (noise floor) of the single- 
oscillator differential delay-line technique is reduced relative to the two- 
oscillator techniques. The sensitivity is modified by the factor 

Sd = 2( 1 - cos 2,&d). 035) 

For WT~ = 2ndTd < 1 a good approximation iS 

s; = 2(1 - COS 2,tfrd) = (Wr,,)‘[l - &(w?d)*] = (2tt,kd)2 = 8’, (87) 

where 6’ is the phase delay of the differential delay line evaluated at the 
frequency 1: Figure 17 shows the relative sensitivity (noise floor) of the two- 
oscillator technique and the single-oscillator technique with different 
delay-line lengths. The fW2 slope is noted at Fourier frequencies beyond 
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FIG. 17 Relative sensitivity (noise floor) of single-oscillator and two-oscillator phase- 
noise measurement systems. 
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about I kHz. For Fourier frequencies closer to the carrier, the slope is f -3. 
i.e., the sum of the f -’ slope of Eq. (87) and the f - ’ flicker noise. 

Phase-locked sources have phase-noise characteristics that cannot be 
measured at close-in Fourier frequencies using this basic system. The 
relative sensitivity of the system can be improved by using a dual (two- 
channel) delay-line system and performing cross-spectrum analysis, which 
will be presented in this chapter. 

Labaar (1982) developed the delay-line rf bridge configuration shown in 
Fig. 18. At microwave frequencies where a high-gain amplifier is available, 
suppression of the carrier by the rf bridge allows amplification of the noise 
going into the mixer. A relative sensitivity improvement of 35 dB has been 
obtained without difficulty. The limitations of the technique depend on the 
available rf power and the carrier suppression by the bridge. Naturally, if 
the rf input to the bridge is high one must use the technique with adequate 
precautions to prevent mixer damage that can occur by an accidental bridge 
unbalance. Labaar (1982) indicated the added advantage of using the rf 
bridge carrier-suppression technique when attempting to measure phase 
noise close to the carrier when AM noise is present. Figure 19 shows the 

DELAY-LINE 
rf ERIDGE 

PHASE 
SHIFTER 

7 

DELAY LINE 

MIXER 

PHASE 
SHIFTER 

FIG. 18 Carrier suppression using an rf bridge to increase relative sensitivity. (Courtesy 
Instrument Society of America.) 

TN-224 



274 A. L. LANCE, W. D. SEAL, AND F. LABAAR 
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FIG. 19 Phase detector output (AM-PM crossover); 7, delay time. 

mixer output for phase (PM) and amplitude (AM) noise in the single- 
oscillator delay-line FM discriminator system. It is noted that the phase 
noise and AM noise intersect and that the AM will therefore limit the mea- 
surement accuracy near the carrier. Even though AM noise is much lower 
than phase noise in most sources, and even though the AM is normally 
suppressed about 20 dB, there is still AM at the mixer output. This output 
is AM leakage and is caused by the finite isolation between the mixer ports. 
The two-oscillator technique does not experience this problem to this 
extent because the phase noise and AM noise maintain their relative rela- 
tionships at the mixer output independent of the offset frequency from the 
carrier. 

B. CALIBRATION AND MEASUREMENTS USING IXE DELAY 

LINE AS AN FM DISCRIMINATOR 

The block diagram of a practical single-oscillator phase noise measure- 
ment system is shown in Fig. 20. The signals in the delay-line channel of the 
system experience the one-way delay of the line. With adequate source 
power, the system is not limited to the optimum 1 Np (8.686 dB) previously 
discussed for a power-limited system. Measurements are performed using 
the following operational procedures. 

(1) Measure the tracking spectrum analyzer IF bandwidths as set forth 
in Section III.C.1. 

(2) Establish the system power levels (Section 1V.B.I). 
(3) Establish the discriminator calibration factor (Section IV.B.2). 
(4) Measure and plot the oscillator characteristics in the automatic 

system used (Section IV.B.3). 
(5) Measure the system noise floor (sensitivity) (Section IV.B.4). 

TN-225 



7. PHASE NOISE AND AM NOISE MEASUREMENTS 275 
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FIG. 20 Single-oscillator phase noise measurement system using the delay line as an 
FM discrimmator. (From Lance ef al., 1977a.) 

1. System Power Levels 

The system power levels are set using attenuators, as shown in Fig. 20. 
Because the characteristic impedance of attenuator No. 4 is 50 R, mismatch 
errors will occur if the mixer output impedance is not 50 R. As previously 
discussed, the mixer drive levels are set so that the mixer output signal, as 
observed during calibration, is sinusoidal. This has been accomplished in 
TRW systems with a reference (LO) signal level of 10 dBm and a mixer 
input level of about 0 dBm from the delay line. 

A power amplifier can be used to increase the source signal to the measure- 
ment system. This amplifier must not contribute appreciable additional 
noise to the signal. 

2. Discriminator Calibration 

The discriminator characteristics are measured as a function of frequency 
and voltage. The hertz-per-volt sensitivity of the discriminator is defined 
as the calibrarion factor (CF). The calibration process involves measuring 
the effects of intentional modulation of the source (carrier) frequency. A 
known modulation index must be obtained to calculate the calibration 
factors of the discriminator. The modulation index is obtained by using 
amplitude modulation to establish the carrier-to-sideband ratio when there 
is considerable instability of the source or when the source cannot be fre- 
quency modulated. 
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It is convenient to consider the system equations and calibration techniques 
in terms of frequency modulation of stable sources. If the source to be 
measured cannot be frequency modulated, it must be replaced, during the 
calibration process, with a modulatable source. The calibration process 
will be described using a modulatable source and a 20-kHz modulation 
frequency. However, other modulation frequencies can be used. The cali- 
bration factor of this type discriminator has been found to be constant over 
the usable Fourier frequency range, within the resolution of the measuring 
technique. The calibration factor of the discriminator is established after the 
system power levels have been set with the unit under test as the source. 

The discriminator calibration procedures are as follows. 

(1) Set attenuator No. 4 (Fig. 20) to 50 dB. 
(2) Replace the oscillator under test with a signal generator or oscillator 

that can be frequency modulated. The power outpur and operutingfrequenc) 
of the generator must be set to the same precise frequency and amplitude 
values that the oscillator under test will present to the system during the mea- 

‘surement process. 
(3) Select a modulation frequency of 20 kHz and increase the modulation 

until the carrier is reduced to the first Bessel null, as indicated on the spectrum 
analyzer connected to coupler No. 1. This establishes a modulation index 
(m = 2.405). 

(4) Adjust the phase shifter for zero volts dc at the output of the mixer, 
as indicated on the oscilloscope connected as shown in Fig. 20. This estab- 
lishes the quadrature condition for the two inputs to the mixer. This quadrature 
condition is continuously monitored and is adjusted if necessary. 

(5) Tune the tracking spectrum analyzer to the modulation frequency 
of 20 kHz. The power reading at this frequency is recorded in the program 
and is corrected for the 50-dB setting of attenuator No. 4, which will be set 
to zero decibel indication during the automated measurements. 

P(dBm) = ( - dBm power reading) + 50 dB (88) 

This power level is converted to the equivalent rms voltage that the spectrum 
analyzer would have read if the total signal had been applied: 

V rms = J1oP’lO/lOOO + R. (89) 

(6) The discriminator calibration factor can now be calculated because 
this power in dBm can be converted to the corresponding rms voltage using 
the following equation: 

V,,, = j(lOp”o/lOOO) x R, (90) 

where R = 50 R in this system. 
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(7) The discriminator calibration factor is calculated in hertz per volt as 

(91) 

The modulation index m for the first Bessel null as used in this technique 
is 2.405. The modulation frequency is /A. 

3. .Measurement and Data Plotting 

After the discriminator is calibrated, the modulated signal source is re- 
placed with the frequency source to be measured. Quadrature of the signals 
into the mixer is reestablished, attenuator No. 4 (Fig. 20) is set to 0 dB, and 
the measurement process can begin. 

The measurements, calculations, and data plotting are completely auto- 
mated. The calculator program selects the Fourier frequency, performs 
autoranging, and sets the bandwidth, and measurements of Fourier frequency 
power are performed by the tracking spectrum analyzer. Each Fourier 
frequency noise-power reading P, (dBm) is converted to the corresponding 
rms voltage by 

V lrml = \/‘10’Pn+2~5”10/1U10 x R. 

The rms frequency fluctuations are calculated as 

(92) 

Sv,,, = vtrm, x CF. (93) 

The spectral density of frequency fluctuations in hertz squared per hertz is 
calculated as 

Wf> = @hn,>2/~1 (94) 

where B is the measured IF noise-power bandwidth of the spectrum analyzer. 
The spectral density of phase fluctuations in radians squared per hertz is 
calculated as 

S,,(f> = L(fYf2. (95) 

The NBS-designated spectral density in decibels (carrier) per hertz is cal- 
culated as 

a/),, = 10 1% b%,(f 1. (96) 

Spectral density is plotted in real time in our program. However, the data 
can be stored and the desired spectral density can be plotted in other forms. 
Integrated phase noise can be obtained as desired. 
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4. KoisesFloor Measurements 

The relative sensitivity (noise floor) of the single-oscillator measurement 
system is measured as shown in Fig. 12a for the two-oscillator technique. 
The delay line must be removed and equal channel lengths constructed, 
as in Fig. (12a). The same power levels used in the original calibration and 
measurements are reestablished, and the noise floor is measured at specific 
Fourier frequencies, using the same calibration-measurement technique, 
or by repeating the automated measurement sequence. 

A correction for the noise floor requires a measurement of the rms voltage 
of the oscillator (cirms) and a measurement of the noise floor rms voltage 
(ulrrns). These voltages are used in the following equation to obtain the 
corrected value: 

~rnls = Jhrln32 - hns)2. (97) 

The value r,,, is then used in the calculation of frequency fluctuations. 
If adequate memory is available, each value of ulnnr can be stored and used 
after the other set of measurements are performed at the same Fourier 
frequencies. 

The following technique was developed by Labaar (1982). Carrier sup- 
pression is obtained using the rf bridge illustrated in Fig. 18. One can easily 
improve sensitivity more than 40 dB. At 2.0 and 3.0 GHz 70-dB carrier 
suppression was realized. In general, the improvement in sensitivity will 
depend on the availability of an amplifier or adequate input power. 

Figure 21 shows the different noise floors in a delay-line bridge discrimi- 
nator. It is good measurement discipline to always determine these noise 
floors; also, the measurements, displayed in Fig. 21, give a quick under- 
standing of the physical process involved. The first trace is obtained by term- 
inating the input of the baseband spectrum analyzer. The measured output 
noise power is then a direct measure of the spectrum analyzer’s noise figure 
(NF). The input noise is thermal noise and is usually indicated by “KTB,” 
which is short for “the thermal noise power at absolute temperature of 7 
degrees K(elvin) per one hertz bandwidth (B). This KTB number is, at 18°C 
about - 174 dBm/Hz. 

Figure 2la shows that trace number 1 for frequencies above about 1 kHz is 
level with a value of about - 150 dBm = - (174-24) dBm, which means that 
the spectrum analyzer has an NF of 24 dB. At 20 Hz the NF has gone up to 
about 48 dB. To improve the NF, a low-noise (NF, 2dB). low-frequency 
(10 Hz-10 MHz) amplifier is inserted as a preamplifier. Terminating its 
input now results in trace number 2. At the high frequency end, the measured 
power goes up by about 12-13 dB, and the amplifiers gain is 34 dB. This 
means that the NF is improved by 34 - 12-13 = 21-22 dB, which is an 
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FIG. 21 (a) Noise contributton analysis: (b) phase noise test setup using a delay-line rf 
bridge discrtmtnator (rf = 2.8 GHz; 0. termination pornts. NF, noise figure: LF. low frequency. 
(From Seal and Lance. 1981.) 

NF c 2-3 dB as expected, i.e., the first stage noise predominates. The low- 
frequency end at 20 Hz gives an NF of 26 dB, which overall is quite an im- 
provement. 

In trace number 3 the mixer is included with it’s rf (signal) port terminated. 
It is clear from this trace that certainly up to 100 kHz, the noise generated 
by the mixer diodes being “pumped’* by the LO signal dominates. This case 
represents the “classic” delay-line discriminator. The last trace (number 4) 
includes the low-noise, high-gain rf amplifier that can be used because the 
carrier is suppressed in the delay-line rf bridge discriminator, in contrast 
to the classic delay-line discriminator case. This trace shows that from 1 kHz 
on up the measured output power is flat, representing a 2-3-dB NF. 

At about 20-40 Hz, trace numbers 3 and 4 begin nearing their cross- 
over floor. In this particular case, which is discussed in full by Labaar (1982), 
the measurement systems noise floor (resolution) has been improved by 
40dB. 

Figure 22 shows plots of phase noise as measured at two frequencies 
using delay lines of different lengths. The delay line used measure at 600 MHz 
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FOURIER FREOUENCY IHzI 

FIG. 22 Phase noise of 600-MHz oscillator multiplied to 2.4 GHz (From Lance et al.. 
1977a.) 

was about 500 nsec long, as noted by the first null, i.e., the reciprocal of the 
Fourier frequency of 2 MHz is the approximate differential time delay. 
Note that a shorter delay line (approximately 250 nsec differential) is used 
to measure the higher frequency because the delay-line discriminator 
calibration is valid only to a Fourier frequency at approximately 35% of 
the Fourier frequency at which the first null occurs, if a linear transfer 
function is assumed. 

The actual transfer function of a delay-line discriminator (classic and rf 
bridge types) is sinusoidal, as shown in Fig. 23a. The baseband spectrum 
analyzer measures power in a finite bandwidth, and as a consequence it is 
possible to measure through a transfer-function null if the noise power does 
not change substantially over a spectrum-analyzer bandwidth. The following 
power relations then hold: 

P,,,,(w) = 1lAw 
P(w) s c,+Ao.'2 

P(w’) do’ 1 bw do’ = P(w). (98) 
o-Au.2 
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FIG. 23 Transfer functions for a delay-line rf bridge discriminator: (a) actual; (b) 
approximate (linear) and “correct” (sinusoidal). Phase noise: H.P. 8672A at 2.4 GHz. 

Figure 23b shows the results using a linear approximation and the “cor- 
rect” transfer function for a delay-line rf bridge discriminator. The correct 
transfer function breaks down close to the null because the signal level 
drops below the system’s noise floor, as explained by Labaar (1982). 

Using the sinusoidal transfer function in the calculator software gives 
correct results barring frequency intervals of 5 to 10 spectrum analyzer’s 
bandwidths (10 x 30 = 300 kHz) centered at the transfer function nulls. 
These particular data were selected to illustrate the characteristics of the 
system. Recall that one can easily make the noise floor 40 dB lower using 
the rf bridge shown in Fig. 18. 

C. DUAL DELAY-LINE DISCRIMINATOR 

1, Phase Noise Measurements 

The dual delay-line discriminator is shown in Fig. 24. This system was 
suggested by Halford (1975) as a technique for lowering the noise floor 
of the delay-line phase noise measurement system. The system consists of 
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FIG. 24 A dual delay-line phase noise measurement system. (Courtesy Instrument Society 
of America.) 

two differential delay-line systems. The single-oscillator signal is applied 
to both systems and cross-spectrum analysis is performed on the signal 
output from the two delay-line systems. Signal processing is performed with 
the Hewlett-Packard 5420A digital signal analyzer. The cross spectrum is 
obtained by taking the product of the Fourier transform of one signal and 
the complex conjugate of the Fourier transform of a second signal. It is 
a phase-sensitive characteristic resulting in a complex product that serves 
as a measurement of the relative phase of two signals. Cross spectrum gives 
a phase- and amplitude-sensitive measurement directly. By performing 
the product SJ(~) . Sx(f‘)*, a certain signal-to-noise enhancement is achieved. 
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The low-noise amplifiers preceding the digital signal analyzer are used 
when performing measurements at Fourier frequencies from 1 Hz to 25 kHz. 
The amplifiers are not used when performing measurements below the 
Fourier frequency of 1 Hz. 

2. Calibrating the Dual Delay-Line System 

Each delay line in the system is calibrated separately following the same 
basic procedure set forth in Section 1V.B. The Hewlett-Packard 5420 
measures the one-sided spectral density of frequency fluctuations in hertz 
squared per hertz. The spectral density of phase fluctuation in radians 
squared per hertz can be calculated as 

S,,(f) = S,“WfZ~ (99) 
and 

-wf’) = Mfw-2, Cl@3 

per hertz. The Hewlett-Packard 5420 measurement of S,,(j) in Hz’/Hz must, 
therefore, be corrected by li2f 2. However, thef2 correction must be entered 
in terms of radian frequency (o = 2j). This conversion is accomplished by 

W-) = S,,(fX Wf2X4n2/4n2) = C27r2S,,(fM42 (101) 

per hertz since Eq. (100) can be stated in the following terms: 

c2~2ww4w. 

Signal-to-noise enhancement greater than 20 dB has been obtained using 
the dual-channel delay-line system. 

D. MILLIMETER-WAVE PHASE-NOISE MEASUREMENTS 

I. Spectral Density of Phase Fluctuations 

The delay line used as an FM discriminator is based, in principle, on a 
nondispersive delay line. However, a waveguide can be used as the delay 
line because the Fourier frequency range of interest is a small percentage 
of the operating bandwidth (seldom over 100 MHz), and the dispersion can 
be considered negligible. 

The calibration and measurement are performed as set forth in Section 
1V.B. The modulation index m is usually established using the carrier-to- 
sideband ratio that uses amplitude modulation because millimeter sources 
are either unstable or cannot be modulated. The two approaches to measure- 
ments at millimeter frequencies are shown in Figs. 25 and 26. Figure 25 
shows the direct measurement using a waveguide delay line. This system 
offers improved sensitivity if adequate input power is available. The rf bridge 
and delay-line portion of the system differs from Fig. 18 because pre- and 
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FIG. 25 Millimeter-wave phase noise measurements using a waveguide delay line. (From 
Seal and Lance. 1981.) 

post-bridge amplifiers with appropriate gain are not available, so the sensi- 
tivity can equal the amount of carrier suppression. 

Figure 26 shows the use of a harmonic mixer to downconvert to the 
convenient lower frequency where post-bridge amplifiers are available. 
The relatively low sensitivity to frequency drift that is characteristic of delay- 
line discriminators becomes an advantage here. A separate calibration 
generator is required, as shown in Fig. 25, and a power meter is used to assure 
proper power levels during the calibration process. 

2. SPECTRAL DENSITY OFAM~LI'IZIDEFLUCTUATIONS 

AM noise measurements require equal electrical length in the two channels 
that supply the signals to the mixer. The delay line must be replaced with the 
necessary length of transmission line to establish the equal-length condition 
when the systems shown in Figs. 25 and 26 are used. The AM noise measure- 
ment system is calibrated and the noise measurements are performed directly 
in units of power for a direct measurement of m(f) in dBc/Hz. m(f) is the 
spectral density of one modulation sideband divided by the total signal 
power at a Fourier frequency difference f from the signal’s average frequency 
lno. The system calibration establishes the detection characteristics in terms 
of total power output at the IF port of the mixer (detector). 
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FIG. 26 A millimeter-wave hybrid phase noise measurement system that produces IF 
frequency and uses a delay-line discriminator at IF frequency. (From Seal and Lance, 1981.) 

The AM noise measurements are performed according to the following. 

(1) A known AM modulation (carrier-sideband ratio) must be estab- 
lished to calibrate this detector in terms of total power output at the IF port. 
The modulation must be low enough so that the sidebands are at least 
20 dB below the carrier. This is to keep the total added power due to the 
modulation small enough to cause an insignificant change in the detector 
characteristics. 

(2) The rf power levels are adjusted for levels of approximately 10 dBm 
at the reference port and 0 dBm at the test port of the mixer. 
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(3) Approximately 40 dB is set in the precision IF attenuator. The system 
is adjusted for an our-of-phase quadrature condition. 

(4) The modulation frequency and power level are measured by the 
automatic baseband spectrum analyzer. The total carrier-power reference 
level is measured power, plus the carrier-sideband modulation ratio, plus 
the IF attenuator setting. 

(5) The AM modulation is removed. the IF attenuator set to ,O dB, and 
the system re-checked to verify the out-of-phase quadrature (maximum dc 
output from the mixer IF port). Noise (V,) is measured at the selected Fourier 
frequencies. A direct calculation of m(f) in dBc/Hz is 

,,Q) = [(modulation power (dBm) + carrier-sideband ratio (dB) 

+ IF attenuation (dB) - noise power (dBm) + 2.5 dB 

- 10 log(BW)]. (102) 

Figure 27 illustrates the measurements of AM and phase noise of two 
GUNN oscillators that were offset in frequency by 1 GHz. The measurements 
were performed using the coaxial delay-line system. 
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FIG. 27 Phase noise and AM noise of 40- and 41-GHz Gunn oscillators. (From Seal 
and Lance. 1981.) 
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V. Conclusion 

The fundamentals and techniques for measurement of phase noise have 
been set forth for two basic systems. The two-oscillator technique provides 
the capability for measuring high-performance cw sources. The system 
sensitivity is superior to the single-oscillator technique for measuring phase 
noise very close to the carrier. 

High-stability sources such as those used in frequency standards applica- 
tions can be measured without using phase-locked loops. However, most 
microwave sources exhibit frequency instability that requires phase-locked 
loops to maintain the necessary quadrature conditions. The characteristics 
of the phase-locked loops must be evaluated to obtain the source phase 
noise characteristics. Also, in principle, one must have three sources at the 
same frequency to characterize a given source. If three sources are not avail- 
able, one must assume that either one source is superior in performance or 
that they have equal phase noise contributions. 

The single-oscillator technique employing the delay line as an FM dis- 
criminator has adequate sensitivity for measuring most microwave sources. 
The economic advantages of using this system include the fact that only 
one source is required, phase-locked loops are not required, system configur- 
ation is relatively inexpensive, and the system is inherently insensitive to 
oscillator frequency drift. 

The single-oscillator technique using the delay-line discriminator can 
be adapted to measure the phase noise of pulsed sources. Pulsed sources 
have been measured at 94 GHz by F. Labaar at TRW, Redondo Beach, 
California. 
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Summary 

A fully automated measurement system has 
been developed that combines many properties 
previously realized with separate techniques. 
This system is an extension of the dual mixer 
time difference technique, and maintains its 
important features: zero dead time, absolute 
phase difference measurement, very high preci- 
sion, the ability to measure oscillators of 
equal frequency and the ability to make mejsure- 
ments at the time of the operator's choice. For 
one set of design parameters, the theoretical 
resolution is 0.2 ps, the measurement noise is 2 
ps rms and measurements may be made within 0.1 s 
of any selected time. The dual mixer technique 
has been extended by adding scalers which remove 
the cycle ambiguity experienced in previous 
realizations. In this respect, the system 
functions like a divider plus clock, storing the 
epoch of each device under test in hardware. 

The automation is based on 2the ANSI/IEEE- 
583 (CAMAC) interface standard. Each measure- 
ment channel consists of a mixer, zero-crossing 
detector, scaler and time interval counter. 
Four channels fit in a double width CAMAC module 
which in turn is installed in a standard CAMAC 
crate. Controllers are available to interface 
with a wide variety of computers as well as any 
IEEE-488 compatible device. Two systems have 
been in operation for several months. One 
operates 2-l hours a day, taking data from 15 
clocks for the NBS time scale, and the other is 
used for short duration laboratory experiments. 

Review cf the Dual Mixer 
Time Difference Technique 

It is advantageous to measure time directly 
rather than time fluctuations, frequency or 
frequency fluctuationns. These measurements 
constittite a hierarchy in which the subsequently 
listed quantities may always be calculated from 
the previous ones. However, the reverse is not 
true when there are gaps in the measurements. 
In the past, frequency was usually not derived 
from time measurements for short sample times 
because time interval measurements could not be 
perfcrTeo with adeouate precision. The dual 

mixer technique, illustrated in Figure 1, made 
it possible to realize the precision of the beat 
frequency technique in time interval measure- 
ments. 

The signals from two oscillators (clocks) are 
applied to two ports of a pair of double balan- 
ced mixers. Another signal synthesized from one 
of the oscillators is applied to the remaining 
two ports of the mixer pair. The input signals 
may be represented in the usual fashion 

Vi(t) = Vlo sin L2nv10t + $l(t)l, 

V2(t) = V20 sin [2nve0t + o,(t)] and 

vp = v,, cos C2nvsot + b,Wl 

where v = v 
usually 2811ed tl$ 

(l-l/R) and R is a constant 
heterodyne factor. 

The low passed outputs of the two mixers 
are 

'Bl = 'BlO 
sin [@I(t) -G,(t)] and 

'B2 
= VB20 sin [@2(t)-$s(t)] where 

a(t) = 2nvot + o(t). 

The time interval counter starts at time t when 
crosses zero in the positive direct1 n and 

i@Jps 
3 

at time t the time of the very next 
positive zero cro!;ing of VB2. Thus 

@I(t,.,) - aS(tM) = ZMn and 

@&,) - as(tN) = 2Nn where 

N and M are integers. 
Subtracting the two equations in order to com- 
pare the phases of oscillators 1 and 2, one 
obtains 

@2(tN)-+l(tM) = ~,(t,P,(t,)+2WW~. 

The phase of an oscillator at time t may 
be written in terms of its phase at tM and lt 4 
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average frequency over the interval t,,, < tN. 

WN) = @(tM) + En[$tM;tN)l(tN-tM) and 

when we apply this equation to both a2 and (OS 
we find 

@2(tM)-41(tM) = 2(N+l)n 

where us2 = v2-vs. 

Since M and N are not measureable with the 
equipment in Figure 1, the dual mixer technique 
has heretofore only been used to measure the 
phase difference between two oscillators modulo 
2n. We denote the period of the time interval 
counter time base by z and the number of counts 
recorded in a measure&t by P. Then the phase 
difference between the two oscillators is given 
by 

- 
[@2(tMHl(tM)lmod 2i7 = -2n[v&,;tN)l~c~ 

Figure 2 illustrates the output of the 
measurement system over a period of time. If a 
measurement begins and ends without the time 
interval counter making a transition between 
zero and its maximum value, e.g., t < t < t < 
t then the phase 
f&m the data. 

difference can 8e ca cula ed 'r' E! 
Ift ct <t ct. <t then 

the data must be co8rect.b byb2n to car&late 
the phase difference. Experience has shown that 
there are many measurement situations for which 
the number of transitions of the time interval 
counter which occur between t and t cannot be 
known. For this reason, a mo II! 4 ficatl n has been 
developed which removes the ambiguity by measur- 
ing M and N. 

Extended Dual Mixer Time 
Difference Measurement Technique 

In order to configure the system to acquire 
complete phase information, two scalers are 
added to count the zero crossings of each mixer. 
Figure 3 is the block diagram of a two channel 
system. It is constructed from identical cir- 
cuit modules and therefore contains an unused 
time interval counter. However, this design 
permits very straightforward, and inexpensive 
extension to the comparison of an arbitrarily 
large number of oscillators with no need for 
switching any signals. 

The counter outputs are combined to form 
the phase difference between oscillators. 

Q2(tM)-Ql(tM) = 2(No-Mo)n + 2(N-M)n 

The first term is a constant which represents 
the choice of the time origin and can be ig- 
nored. The last two terms and their sum are 
plotted in Figure 4. 

The 
cannot be 

average beat frejiEvir "R& ($;t!) 
known exactly. 

estimated with sufficient precisibn fr:mYth: 
Frevious pair of measurements designated ' and 

. The average frequency is approximately 

iB2(tM;tN) G (N"-N')/[R(M"-M')/vIO + tc(P"-PI)] 

provided 
compared 
for this 
section. 

All 

that it changes sufficiently slowly 
to the interval t <t . A typical value 
error will be gne! in the following 

Hardware Implementation 

measurement channels consist of a 
mixer, zero-crossing detector, scaler and time 
interval counter. Four such circuits can be 
built in a double width CAMAC module. The 
system is easily expanded to compare many oscil- 
lators and a complete system for making phase 
comparisons among four clocks is shown in Figure 
5. We have chosen parameters which are reason- 
able for comparing state-of-the-art atomic stan- 
dards. Thus, the synthesizer is offsgt 1OHz 
below oscillator I 1 and R = 5 x 10 . The 
outputs from both mixers are approximately 10Hz. 
The noise bandwidth is 100 Hz. The time inter- 
val counter is twice the frequency of oscillator 
#l or approximately5 10 MHz. The quantization 
error is 1/2R = 10 cycle or 0.2~s which is a 
factor of ten smaller than the measurement 
noise. As stated earlier, an error will result 
from frequency changes which violate the con- 
stancy assumption -wd to estimate u 
change in u by 10 
tween two IA 

during the inter &I?' beA 
asurements will result in a time 

deviation error of lops. Thus, one must make 
more closely spaced measurements for oscillators 
which have large dynamic frequency changes than 
for more stable devices. Two other sources of 
inaccuracy are the sensitivities to the ampli- 
tude and phase of the common oscillator. Figure 
6 shows the measured value of x = $/2nv as a 
function of the amplitude of the input signal 
and the phase of the synthesizer. 

The new measurement system has many desir- 
able features and properties: 

(1) It has very high resolution, limited by the 
internal counters to 0.2 ps and by noise to 
approximately 2 ps. 

(2) It has much lower noise than divider based 
measurement systems. However compromises 
made to achieve low cost, low power, small 
size and automatic operation degrade the 
performance compared to state-of-the-art 
systems for comparing 2 oscillators. 

(3) The operation is fully automatic. 

(4) NBS has developed a detailed opeyating 
manual for the equipment and software. 
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(5) All oscillators in the range of 5 MHz + 5 
Hz may be compared. Other carrier frequen- 
cies such as 1 MHz, 5.115 MHz, 10 MHz and 
10.23 MHz are also usable. However, dif- 
ferent carrier frequencies may not be mixed 
on the same system. The system has been 
successfully tested with an oscillator off- 
set 4.6 Hz from nominal 5MH.z. Measurements 
were made at intervals of 2 hours between 
which the syst$m had to accumulate approx- 
imately 2 x 10 n. The system has also bggn 
tested with an oscillator offset 4 x 10 
and no errors were detected during a period 
of 40 days. 

(6) All sampling times in the range of 1 second 
to 16 days with a resolution of 0.1 second 
are possible. Measurements may be made on 
command or in a preprogrammed sequence. 

(7) Measurements are synchronized precisely, 
i.e. at the picosecond level, with the 
reference clock. They may therefore be 
synchronized with important user system 
events, such as the switching times of a 
FSK or PSK system. 

(8) All oscillators are compared synchronously 
and all measurements are performed within a 
maximum interval of 0.1 second. As a re- 
sult, the phase of any oscillator needs to 
be interpolated to the chosen measurement 
time for an interval of 0.1 second maximum. 
This capability, which is not present in 
either single heterodyne measurement sy- 
stems or switched measurement systems 
eliminates a source of "measurement" error 
which is generally much larger than the 
noise induced errors. For example, inter- 
polation of the phffe pf a high performance 
Cs clock (a - 10 /I') over a period of 3 
hours would produce approximately 1.5 ns 
phase uncertainty. To maintain 4 ps accur- 
acy requires measurements simultaneous to 
0.1s. 

(9) 

(10) 

(11) 

There are no phase errors due to the swit- 
ching of rf signals since there is no 
switching anywhere in the analog measure- 
ment system. 

No appreciable phase errors are introduced 
when it is necessary to change the refer- 
ence clock since, as shown in Figure 6, the 
peak error due to changes in synthesizer 
phase is 20 ps. 

The measurement system is capable of mea- 
suring its own phase noise when the same 
signal is applied to two input ports. 
Figure 7 shows the phase deviations between 
two such channels over a period of 75,000 
seconds and Figure 8 is the corresponding 
Allan variance plot. Figure 9 shows the 
phase deviations between 2 input channels 
over a oeriod of 40 day;. 

(12) Since the IEEE-583 (CAMAC) interface stan- 
dard has been followed for all the custom 

hardware, the system may be easily inter- 
faced to almost any instrument controller. 
NBS has already tested the system using a 
large minicomputer, a small minicomputer 
and a desk top calculator. Interfaces 
between IEEE-583 and IEEE-488 controllers 
are available and have been used success- 
fully. 

(13) The system is capable of camparing a very 
large number of oscillators at a reasonable 
cost per device. 

There are also disadvantages to this mea- 
surement system. The most important are: 

(1) The complexity of the hardware is greater 
than for some systems. It is possible 
that this will reduce reliability. 

(2) A high level of redundancy is difficult to 
achieve. The system design stresses size, 
power, convenience and cost, resulting in 
an increase in the number of possible 
single point failure mechanisms compared to 
some other techniques. For example! a 
CAMAC power supply failure will result in a 
loss of data for all devices being measured. 

(3) A substantial committment is required in 
both specialized hardware and software. 

(4) If an oscillator under test experiences a 
phase jump which exceeds 1 cycle, the 
measurement system records a jump with 
incorrect absolute magnitude. As a result, 
it may not be applicable to signals which 
are frequency modulated with discontinuous 
phase steps larger than 2x. 

Conclusions 

We have demonstrated a new phase measure- 
ment system with very desirable properties: All 
oscillators in the range of 5MHz It 5Hz may be 
measured directly. The sampling times are only 
restricted by the requirement that they exceed 
;;gI?econd. The noise floor is u (2,~) = 3 x 

/T in short term and the tin& deviations 
are less than 100 ps. All circuitry is designed 
as modules which allows expansion at modest 
cost. Compatibility with a variety of computers 
is insured through the use of the IEEE-583 
interface and adapters are available to permit 
use with an IEEE-488 controller. The system 
makes it feasible to make completely automated 
phase measurements at predetermined times on 
large numbers of atomic clocks. It's own noise 

is one-hundred times less than the state-of-the- 
art in clock performance. It will be used in 
the near future to make all measurement needed 
to compute NBS atomic time, but it will alSO be 
very valuable for any laboratory which uses 
three or more atomic clocks. 
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Abstract 

We theoretically and experimentally investigate the biases 
and the variances of Fast Fourier transform (FFT) spectra es- 
timates with different windows (data tapers) when used to an- 
alyze power-law noise types j”, j-l, j-’ and j”. There is a 
wide body of literature for white noise but virtually no investiga- 
tion of biases and variances of spectra estimates for power-law 
noise spectra commonly seen in oscillators. amplifiers, mixers, 
etc. Biases (errors) in some csaas exceed 30 dB. The experi- 
mentd techniques introduced here permit one to andyzc the 
performance of virtually any window for any power-law noise. 
This makes it possible to determine the level of a particular 
noise type to a specified statisticd accuracy for a particular 
window. 

I. Introduction 

Fast Fourier transform (FFT) spectrum andyzers are very 
commonly used to estimate the spectra density of noise. These 
instruments often have severd different windows (data tapers) 
available for analyzing different types cd spectra. For example, 
in some applications spectral resolution is important: in others, 
the precise amplitude of a widely resolved line is important; and 
in still other applications, noise andysis is important. These 
diverse applications require different types of windows. 

We theoretically and experimentally investigate the biases 
and variances of FFT spectra estimates with di&rent windows 
when used to andyze a number of common power-law noise 
types. There is a wide body of literature for white noise but tir- 
tudly no investigation of these dfects for the types of power-law 
noise spectra commonly seen in oscillators, amplifiers, mixers, 
etc. Spe&cally, we present theoretical results for the biases 
associated with two common windows - the uniform and Han- 
ning windows - when applied to power-law spectra varying 
as j”, j-l and j-‘. We then introduce experimentd tech- 
niques for accurately determining the biases of any window and 
use them to evaluate the biases af three diflemt windows for 
power-law spectra varying ar j”, j”, j’s and j”. As an ex- 
ample we find with j -’ noise that the uniform window can have 
errors ranging from a few dB to over 30 dB, depending on the 
length of span of the j-’ noise. 

We have dso theoretically investigated the variances of 
FFT spectrd estimates with the uniform and Harming windows 
(confidence of the estimates) M a function of the power-law 
noise type and bs a function of the amount d data. We in- 
troduce experimental techniques that make it relatively eary to 
independently determine the variance of the spectrd estimate 
for virtually any window on any FFT spectrum analyzer. The 
variance that is realized on a particuhr instrument depends not 
only on the window but on the specific implementation in both 
hardware and software. We find that the variance d the spec- 
trd density estimates for white noise, j”, is very similar for 
three specific windows available on one instrument and dmost 

identicd to that obtained by standard statistical analysis. The 
variances for spectra density estimates of j-’ noise are only 
4% higher than that of f” noise for two of the windows stud- 
ied. The third window - the uniform window - does not yield 
usable results for either js3 or j-’ noise. 

Based on this work it is now possible to determine the 
minimum number d samples necessary to determine the level 
of a particular noise type to a speciSed statisticd accuracy hs a 
function d the window. To our knowledge this was previously 
possible only for white noise - dthough the traditiond results 
are generally valid for noise that varied as jm8, where 3 was 
equd to or lesr than 4. 

II. Spectrum Analyzer Basics 

The spectrum andyzer which was used in the experimen- 
td work reported here is fairly typicd of a number d such in- 
strumenta currently available from various manufacturers. The 
basic measurement process generally consists of taking a string 

of N. = 1024 digitd samples of the input wave form, which we 
represent here by Xi, X2, . . ., XN,. The b&c measurement 
period was 4 ms. This yields a sampling time At = 3.90625 ps. 
Associated with the FFT of a time series with .V, data points, 
there are usually (N,/2) + 1 = 513 frequencies 

j, = f 
N,At ’ 

j =O,l (. . . ( Y,/2. 

The fundamentd frequency jt is 250 Hz, and the Nyquist fre- 
quency fN,/s is 128 kHz. Since the spectrum andyzer uses 
an anti-abasing filter which significantly distorts the high frc 
quency portion of the spectrum. the instrument only displays 
the mesaved spectrum for the lowest 400 nonzero frequencies, 
namely, jr = 250 Hz, j2 = 500 Hz. . . ., j.00 = 100 kHz. 

The exact details of how the spectrum analyzer estimates 
the spectrum for X1, . . ., XN, are unfortunately not provided 
in the do cumentation supplied by the manufacturer, so the fol- 
lowing must be regarded only as a reasonable guess on our part 
as to its operation (ra [l] for a good discussion on the basic 
idead behind a rpcctnrm andyzer; two good general references 
for spectral andyrir are [2] and [4]). The sample mean, 

Rm +& 
is subtracted from esch d the samples, and each of these “de- 
meaned” samples is multipled by a window h, (sometimes called 
b dbtb tb&MX) t0 PdUCe 

x’*’ = hI (X, - 2). I 

The spectral estimate, 

2 

s,(f,) = At 2 X!A)e-‘z*hlAr , j = 0.1.. *.V,/P* 
IS1 
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IS then computed using an FFT algorithm. 
The subscript “1” on Sl( f,) indicates that this is the rpec- 

tral estimate formed from the first block of .v, samples. .4 
similar spectral estimate $( f,) is then formed from the second 
block of contiguous data XN,+I, X,V,+?, . . ., XZN,. In dI, there 
an .vb different spectra estimated from Nb COntipOU blodrs, 
and the spectrum analyzer averages these together to form 

(1) 

It is the statistical properties of $f,) with which we are con- 
cerned in this paper. 

Unfortunately some important -p&s of the windows are 
not provided in the documentation for the instrument. One im- 
portant detail is the manner in which the window is normdizcd. 
There are two common normalizations: 

5 [h, (X, - X)]’ = + F (X, - X)l 
t-1 l 111 

and 

ch: = 1. (2) 
1=1 

The first d these is common in engineering applications became 

it ensures that the power in the windowed samples X1*’ is the 
same as in the original demeaned samples; the second is equiv- 
alent to the first in expectation and is computationdy more 
convenient, but it can result in small discrepancies in power 
levels. Either normalization affects only the level of the spec- 
tral estimate and not its shape. 

There are three windows built into the spectrum andyzer 
used here. The first is the uniform (rectsnylsr, default) win- 

dow hi” = l/fl,. The second is the Harming data window, 
for which there are several slightly different definitiona in the 
literature. In lieu of specific details, we assume the foIIowing 
symmetric definition: 

here CtH) is a constant which forcea the normalization in Equa- 
tion (2). The third window ia a proprietary %ttened peak 
window, about which littk qeci& information is available (it 
is evidently designed to accurately measure the heights of peaks 
in a spectrum). 

when the uniform window is used, i.e., the expected Vaue is 
trpice what it should be at dl frquencies. This theoreticd re- 
sult has been v&&d by Monte Carlo simuiations. but it does 
not agree with our expaimentd data, which shows no signifi- 
cant level shift in the estimated spectrum. The source of this 
diacrepMcy is cummtly under investigation, but it may be due 
to eitha (a) facton in the experimentd data which etTectively 
make it band-limited, mdom-walk noise, i.e.. its spectral shape 
is markedly d&rent from f -2 for, say, 0 < f < fi or (b) an 
incorrect guess on our part M to how the spectra estimate is 
normalizeI by the spectmm andyzer. For the Harming window, 
we found that 

III. Expected Value and Biu of Spectral Etiimatcr 

1II.A. Thcorctic8l Anrlyrir 

We need to assume a noise model for the Xc’s in order 
to determine the statisticd properties of S( fj) in Equation (1). 
We consider three diflerent a~&&, es& oi which is repnrnkd 
in terms of a Gaumisa white noiee process cl with mean ow 
and variance uf . The eecond-orda properties d cub model 
are given by a spectrd density function S(.) de&n& over the 
interval [-1/(2At), 1/(2At)] in cycles/At. The i&t model is a 
discrete parameter, white noise proceas (p noise): 

1 

l.oSS(fj) j s 1; 
1.4gS(f,) j = 2; 

mfd = 
l.lSS(f,) j = 3; 
l.O’IS(f,) j = 4: 
l.OrS(f,) j = 5; 
S(fj) 6 5 j 5 511 to within 3%. 

. 

i.e., S(fj) ia atially uI unbiased spectrd estimate except 
for the lowest few frequencies. This theoretied result has been 
verifed by Monte Carlo simulations and also agces in generd 
with our expexirnentd data. 

Third, for a random-w process, 

X 1 = Cl and S(f) = afAt. E&f,)) = CN,f-'9 1 s j 5 400. 

The second model is a discrete-parameter. random-waik process 
(nomindly f -’ noise): 

The third model is a discrete-parameter. random-run process 
(nominally f -’ noise): 

and S(f)= a,2At 

16sin’ (nfd) 

Continuous parameter versions of these three models have been 
used extensively in the literature M models for noise commoniy 
seen in odIatota. 

Foe each of the three modeIs we have derived expressions 
for E{S(f)}, the expected value of S(f). These expressions 
depend on the window h,, the number of samples .V. in each 
block and - in the case of a random-nm process - the num- 
ber of blocks N,. The details behind these cdculations will be 
reported elsewhere (31; here we merely summarize our conclu- 
sions for the three models in combination with the uniform and 
Haming windows and N, = 1024. 

First, for a white noise process, 

&{$f,)) = s(f)), j = 1.2,. . . ,512, 

when the uniform window is used. For the Harming window, 
the above equality alao holds to a very good approximation for 
2 s j 5 511 and to within 0.8 dB for j = 1 and 512 (the latter 
is d no practicd importance since the highest frequency index 
given by the spectrum andyzer is j = 400). These thcoreticd 
cdculations agree with our experimentd data except at fl (m 
Table 1). 

Second, for a random-walk process, 

E{S(fj)) =2S(f,), j = w-,512. 
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to a good appoximation when the uniform wmdow is used. 
where C,v, is a constant which depends on the number of blocks 
.Vb and increaKs as .Vb increases. Thus the shape of E{ S(fi )} 
follows that of a random-walk process (f-l) rather than that 
of a random-nm process (f”). This shape has been verified 
experimentally (see the next subsection), but the dependence 
of the level on :Vb has not. The increase in level of E{ s(f))} M 
.Vb increases is due to the fact that the expected value of the 
sample variance of a block of N, samples increws with time 
- by contrast. it is constant with time for the white noise and 
random-walk cases. For the Harming window, we found that 

We = G,S(fi)> 4~j~400, 

to a good approximation, where again CL, is a constant - 
different from C.V, - which depends on the number of blocks 
.vb and increases as N, increares. For frequencies less than 
f4 the theoretical results indicate significant (greater than 4%) 
distortion in the shape, but these do not agree in detail with the 
experimental values reported in Table 1. For f, 2 f4 the shape 
has been verified experimentdly, but the dependence of the level 
on H, has not. The discrepancy in level between the theoreticd 
and experimentd results is yet to be resolved, but it is probably 
due to a mismatch between the assumed random-nm model and 
the true spectrum for the data (possibly band-limited random- 
rUtI). 

3) ?hmre Filtar ntiu Rmctlm h(f) 

nua 

$2 

7 1 

B(f) - sum(f) - 3(f) sm(ft) 

Figure 1. Outline of meuumnent procedure for determining 
the hisses in spectrd eatimatora. 

1II.B. Experimental Determination 

The following procedure can be used to experimentdly de- 
termine the bias in the spectrd estimate of any noise spectrum 
using any window in a particular instnunent. The basic concept 
is to implement a filter that, when applied to white noise, mim- 
ics the approximate noir spectra d interat and then measures 
the level of the white noise and the filter transfer function in a 
way which has high precision and accuracy M illustrated in Fig- 
ure 1. First, the level of a known white noise is measured over 
a convenient range. The higher the frequency span the faster 
that this is accomplished. Obviously, the chosen range must 
be one over which the noise source is accurate. To obtain a 

precision of order 0.2 dB generdly requires 1000 samples. Th:s 
memement verifies that the spectral density function and the 
internd reference voltage of the FFT are accurately calibrated 
and working properly. Virtually dl of the windows accurately 
determine the value of white noise if the first few channels zue 
ignored M explained above. Figure 2 shows the measurement 
of a noise source. which hss been independently determmed to 
have a noise spectral density of 99.8 dBV/Hz by the three win- 
dows. (Appendix A shows the circuit diagram for this noise 
source which has an accuracy of better than 0.2 dB for frequen- 
cies from 20 to 20 kHz.) 

-SS 
e(v) 

I 
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/OIV 

-103 
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Figure 2. Spectral estimation of a white noise standard us 
ing the uniform, Harming and the proprietruy battened peak” 
windows. 

Second, an approximately flat spectrum is measured over 
the frequency range of interest. It is not important if there are 
small variations in the level that change slowly over the fre- 
quency span. Third, the transfer function of the filter is deter- 
mined for the frequencies of interest using a very narrow spectral 
source (typically an audio oscillator is sufficient). The very nar- 
row source is accurately measured by the window since there is 
no problem with either high frequency or low frequency noise 
biasing the estimate. The use of a window with a flattened peak 
response is helpful but not necessary if the frequency source is 
su&iently stable. This transfer function is then applied to the 
meMvcd white noise spectrum in step two above. This yields a 
very accurate value for the ‘true” spectral density d the white 
noise source M meanred through the filter. This “true value” is 
then compared to that obtained by the FFT analyzer. The dif- 
ference between that m ensured in steps two and three and that 
measured directly with the FIT is the biad in the spectrd esti- 
mate for that particular window and noise type. The accuracy 
of this approach corned from the fact that the calibration has 
been broken up into steps that can individually be determined 
with high precision and very small bias. The primary assump 
tion ir that the FFT &yzer is linear. Even this assumption 
can be checked by using precision attenuators. If the known 
white noiae in rtep one doed not extend to the frequencies of 
interest, then there is an additiond assumption that the FFT 
is flat with frequency. This assumption is nearly dways good 
except perhaps near the 1-t few channels where the effect of 
the antidiaaing filter might cause small inaccuracies. 

Figurea 3s and 3b show the Yrue” spectral estimate and 
the estimates M measured on a particular instrument using the 
uniform, Han&g, and the instrument’s proprietary “battened 
peak” windws for noise that varies as j-’ over much of the 
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Figures 3a (top) and 3b (bottom). Difference between the true 
spectrum (top) which varies approximately as f-’ and that 
estimated by the uniform, Harming and proprietary “Battened 
peak” windows (bottom). 

range from 1 kHz to 100 kHz. The scan is 0 to 100 kXz, and 
1000 samples were taken for all curves. Note the considerable 
dikence between the spectral estimates for channela 1 to 3 for 
the Hanning and proprietary battened peak” windows. These 
results confirm the theoretical calculations above showing that, 
for the Harming window, the first 3 charmeb should be ignored. 
For the “htened peak” window, the 6mt 14 channels should 
be ignored. For both f” and f -’ noise, the uniform window 
does not yield usable spectral estimates over any portion of the 
scan. Note in this example that at frequencies above 80 kHz 
there is a small step in the spectrd estimates. This is due 
to digitizing errors of the signd due to quantization. If the 
digitizer had more bits, these mom would not occur. This 
problem of dynamic range is common whenever the spectrum of 
interest covers many decades. The usud solution is to use filters 
to divide the spectrum into various frequency range segments 
which are suitable for the dynamic range of the FFT. 

Table 1 summarizes the measured experimentd biases in 
the spectral estimates of a particular instrument with three dif- 
ferent windows for power-law noise types Varying from f” to 
f -‘. This covers most of the random types of noise found in os- 
cillators and signd processing equipment. We do noi advocate 
using the biases reported in this table to correct data - they 

Table 1. Approximate Biases m FFT Spectral Estl.nates 

noise type /O 

channel # lldOI7ll Harming flattened peak 

1 19.6 dB 19.6 dB 20.1 d.B 

2 smdl small 16.7 dB 

3 1 1 7.2 dB 

4 small 

5 1 

noise type f-’ 

channel # unifolm Harming flattened peak 

1 unusable 8.6 dB 10.0 dB 

2 0.4 dB 9.1 dB 

3 0.4 dB 4.0 dB 

4 small 1.2 dB 

5 1 1.1 dB 

6 1.1 dB 

7 1.0 dB 

8 0.8 dB 

9 0.6 dB 

10 0.6 dB 

11 0.5 dB 

12 0.4 dB 

13 0.4 dB 

14 small 

15 1 

only indicate which channels should not be relied upon for data 
andysis. 

IV. Variances of Spectral Estimates 

IV.A. Theoretical Analysis 

We have derived expressions for uar{S(f)} - the variance 

of S(f) - for each of the three models considered in Section 
IILA. These expressions depend primarily on the number of 
blocks Nb. Again, the details behind thm calculations will be 
reported elsewhere [3]. 

First, for a white noise process, the uniform window yields 

while the Harming window yields 

i 

0.69P(fi)/Nb, I = 1; 
v'&f,)) = s2(f>)/:vb, 2 5 j 5 510; 

l.O3s?(f,)/N,, j = 511. 

These results are consistent with our experimental results and 
with standard statisticd theory. 

Second, for a random-walk process, the uniform wmdow 
yields 
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whiie the Harming window yieids 

’ 1.30S2(f,)/.V,, j = 1; 
2.20S2(f,)/N,, j = 2; 
1.3lsz(f,)/N‘, j = 3; 

d%f,)) = 4 
l.lSSs(fi)/N*, j = 4; 
l.09Sr(ft)/N*, j = 5; 
I.06Sz(fj)/N~v j = 6; 
1.04S2(f,)/N,, j = 7; 

\ ~(f,)INbv 8 5 j 5 511 to within 3%. 

Except for the few lowest frequencies, the results for the Han- 
ning window agree with our l xperimentd results and with stan- 
dard statisticd theory; however, the factor of five in the variance 
for the uniform window disagrees with our experiments and with 
standard theory (dthough it has been verified by Monte Carlo 
techniques). The cause of this discrepancy is under inveatiga- 
tion, but we think it is due to the band-limited nature of the 
experimentd data 

Third, for a random-run process, the variance computa- 
tions are not useful since the variance is dominated by the fact 
that the expected value of the sample vsriance for each block of 
samples increases with time. The agreement which we found bo 
twun standard statisticd theory and our experimentd results 
on the 1 fN, rate of decreeee of variance is undoubtedly due 
to the band-limited nature of the expelimentd data. We will 
attempt to verify these conclusions in the future using Monte 
Carlo techniques. 
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Figure 4. Comparison of the spectral atimate of f” powr- 
law noise with 1009 samples with that obtained with 32 sam- 
ples. The text explains how thaw twn curvw are used to obtain 
the fractiond RMS cnz&dence of the spectral eatimate for 32 
samples. 

W.B. Experimental Determination 

The following procedure cm be used to expuimentdly de- 
termine the variance of the spectra eetimatu of virtually any 
type of noise spectrum with any type of window for a particular 
instrument. Since the spectral density d interest is in general 
nonwhite, we must determine both the LYrue value” and a way 
to normalize the fractiond error of the estimate as a function 
of the number of samples. Tbis can be done by making use 
of the above theoreticd andysis that shows that the variance 
should decrease as the square root of the number d samples 
since they are approximately statistically independent (in fact, 
exactly so in the cases of white and random-walk noise). As an 

example we have chodn to take .Vb = 1000 biocks of :he ‘;b70~ 
power-law noise types examined in 1II.B above and compare the 
value of the spectral estimate with that obtained from .Vb = 32 
blocks (see Figure 4). Since the variance of the 1000 block data 
is about 32 times smaller than that of the 32 block data. it can 
me as an accurate estimate of the “true value.” Let Slccc( f, ) 
represent this quantity at the j-th channel (frequency). By sub 
tracting the 1000 block data from the 32 block data at the J-th 
channel, we then have one estimate of the error for the 32 block 
data; by repeating this procedure over N, different channels 
and N, d&rent replications, we can obtain accurate estimates 
of the variance for the 32 block data. Let Sz2,( f,) represent the 
spectra estimate for the 32 block data at the j-th channel and 
the i-th replication. To compensate for the variation in the level 
of the spectral estimates with channel, it is aeces-sary to divide 
the error at the j-th channel by the “true value” Slooo(f,). The 
mum square fractional mor of the 32 block data for the noise 
type under study is given by 

NV 2 
1 

42 = NN 
cc( 

S32,(f,) - slooo(f,, 
r C,rl J S,oooCf,, ) 

=s 
~af{S324fi)l 

sl(fJ) 

It is assumed that aU channels with bias - as indicated in Ta- 
ble 1 - have been excluded in the s ummationoverj. Itisalso 
important that the changes in the spectral density not exceed 
the dynamic range of the digitizer because under this condition 
the quantization errors - in addition to causing biases in the 
spectrd estimates as discussed earlier - can lead to situations 
where the variance does not improve as Nb increases. These val- 
ues can be scdcd to any number of blocks N, if care is taken to 
avoid these quantization errors. Upper and lower approximate 
67% &dence hits for S(fj) - the true spectral density at 
channelj - using Harming, uniform snd the proprietary dat- 
tend peak” windows for Nb approtitely independent blocks 
are given by 

where S( f,) is the spectra estimate given by Equation (1) and 
V(a, Nb) is the fractional vsriance given in Table 2 for f o and 
a = 0, -2, -3 and -4 (these results were obtained by averaging 
over N,N, = 1200 channels). The variances obtained are very 
close to those obtained from standard statistical analysis for 
white noise. i.e.. . , 

s(f,+++F) . 

Table 2. Con6dence Intervals for FFT Spectral Estimates 

power law window 
noise type uniform H-+5 flattened peak 

f2 
r.o2/lm 0.98JJm; 0.981 fi 

1.02/a 1.04/%/X l.WdF 

f -3 unusable 1.04/m 1.04/J% 

f -4 unusable 1.04lJm; 1.04IVX 

V. Conclusions 

We have introduced experimentd techniques to evaluate 
the statistical properties of FFT spectral estimates for common 
noise types found in oecillators, amplifiers. mixen and similar 
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dcv:ces. and we have compared :hese with :heoreucd cdcxk- 
uons UC have used these recbques to study the blues and 
variances of FFT spectral emmares using the umform. Haa- 
rung. and a propnttary 7Iatttned peak” endow. The theo- 
rctlcd analysis was greatly hampered because the instnrment 
manufacturtr does not ciirlose the exact form of the ~attcntd 
peak” window or the normalization proc&rt for the other win- 
dows. ?itvtrtheitu. we obtuned fair agreement bctmn tht 
theoretical and the txptientd andysis. The nriancc~ of 
the spectral tstimatron were vinudly identical to a few per 
cent for p to f-’ noise except for the uniform rindow which 
IS incapable of mersunng noise w&h fails ~47 furer than f”. 
There vu a very large difktnct rn the biua d the 6rst few 
chsumtls for the three nndows. The Harming window showed 
siyficant bism in the first 3 chsnntle while the proprietary 
“flattened peak’ window showed large biuer for f” noiat tvtn 
up to channel 13. The Harming window therefore yields useful 
information over three trmes wrda frequency range than the 
proprietary qatttntd peak” window. In the particular instru- 
mtnt studied. the proprietary ‘YIattened ptak” riodow is the 
best choice for estimating the height of a narrow band source, 
while the Harming wmdow is by far the best choice for spectrd 
andysls of common noise types found in orciliaton. amplifiers, 
muters. etc. We have dso shown that rht 67% confidence levels 
for spectra estimation LII a function of the number of contiguous 
nonoverlapping biocks. S,. is approxirnartiy pvtn by 

for white noise (f” ) Md by 

5=5,(1*~) 

for noise types fS3 to f“. This apts to nthin 4% of that 
found by standard statisticd andyas for white noise. Csmg 
thus data one can now dtterrmnt the number of sunpies nec- 
essazy to estimate - to a gvtn level of statisticd uncmunty 
- the spectrum of the vmous nose typa commonly found UI 
oscillators, amplifiers. mixm. etc. 
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Figure 5. Circuit diagram d a precision noise source: 

Appendix. Pmision Noima Source 

Figure 5 shows the circuit diagram d A pr&sion aoiat 
source whae spectrd dePrity can ht determined from 6nt prin- 
ciples to f0.2 dB over the kqutncy range from 20 Hz to 20 kHz. 
The spectral density is basically given by the Johnson noise d 
the 10’ ohm resistor. vi = 4kTR. where 7’ is in Kelvin, and k is 
Boltrmann’s constant. Comtions due to the input noist volt- 
age and noi- current d the amplifier amount Lo about 0.2 dB 

for the circuit timrents shown. All resiston are prtcislon iR 
metd film rcrircon. The output level can be sntchtd from 
-100 dBV/Hz to -80 dBV/Hz. By adjusting the noise-garr. ca- 
puitorr one can make the noise spectrum fi~r to wrtlun 0.3 dB 
out fo 200 kHt. There is dao provtsion to measure the :nput 
noise vdty of the amplifier by shorting the input to ground 
or the combined noise voltage and noise went by switching a 
220 pF capacitor into the input mssttad of the 10” ohm noise 
resistor. 
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A )IWlDIFIED "ALLAN VARIANCE" WITH INCREASED 
OSCILLATOR CHARACTERIZATION ABILITY 

David W. Allan and James A. Barnes 

Time and Frequency Division 
National Bureau of Standards 

Boulder, Colorado 80303 

;ummary 
Heretofore, the Allan Variance," u *(r), has 

become the de facto standard for measudng oscil- 
lator instabilitv in the time-domain. Often 
oscillator frequency instabilities are resonabl 
modelable with a power law spectrum: S (f) - e" 
where y is the normalized frequency,yf is th; 
Fourier frequency, and a is a constant over some 
range of Fourier frequencies. It has $een shown 
that for power law spectrum a *(r) - T and that 

IJ = -a-l for -3<a< + 1, wherr T is tie nomimal 
sample time over which each value of y is measured. 
The modified "Allan Variance" developed in this 
paper yields p z -a-l for all a in the range -3<a, 
which removes the previous ambiguity: p = -2 for 
+l<a. In other words, with the modified "Allan 
Valiance" one can easily distinguish between white 
phase noise (a = +2) and flicker phase noise 
(a = +1) -- commonly occurring for the short term 
instabilities of quartz crystal oscillators and 
active hydrogen masers. 

the same, i.e., - r-2. It is not at all uncosmton 

for white PM and flicker PM to occur in precision 

oscillators for r of the order of one second and 

shorter. The modified Allan variance, as develop- 

ed in this paper, depends as t-2 for a = +l and as 

~-3 for a = +2. This yields a clear distinction in 

somewhat 

Key,Words. Flicker Noise; Frequency Stability; 
Oscillator Noise Modeling; Power Law Spectrum; 
Time-Domain Stability; White Noise. 

Introduction 

The random fluctuations in precision oscil- 

lators may often be characterized by a power law 

spectrum: 

sym =hafo, (1) 

where y is the normalized frequency deviation, f 

is the Fourier frequency, ha is the intensity of 

the particular noise process, and a is constant 

over some range of f. The typical values of a 

are: +2 (white noise phase modulation, PM); +1 

(flicker noise PM); 0 (white noise frequency 

modulation, FM); -1 (flicker noise FM); and -2 

(random walk FM). The Allan variance, as it has 

come to be known, 
1 

has been demonstrated as a very 

useful statistical tool for characterizing these 

various random processes with the exception that 

ifa= +lor +2, the dependence on t is nominally 

the time domain between these heretofore 

ambiguous processes. 

Definition of "Allan Variance" 

and Related Concepts 

Define y, the normalized frequency deviation, 

as 

y(t) = 
v(t) - v. 

V 
(2) 

0 

where v(t) is the output frequency of the oscilla- 

tor being studied, and v. is nominally the same 

frequency, but of a reference oscillator assumed 

for the moment without loss of generality to be 

better than the test oscillator. The time devia- 

tion from some arbitrary origin (t = 0) is the in- 

tegral of the frequency deviations (from that 

origin): 

x(t) = J- y(t') l dt' (3) 

0 

The iz average frequency deviation over an inter- 

val, T, is 

(4) 

where the assumption is made that the time devia- 

tion measurements are nominally spaced t apart. 
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The "Allan Variance" is defined as: 

cfy2(r> = + ‘(Y,,l -q2> 9 (5) 

where the brackets '9 9 denote infinite time 

average. Using equation (4), one may write: 

uy2(t) = & ‘(x,+2 - 2x3+1 + xp . (6) 

It has been shown that typically u a(r) 

varies as ru', and that u = -a-l for -3 2 a 5 +l. y 1,2 

Hence, we see one of the dimensions of usefulness 

of cry2(r); i.e., ascertaining the dependence on T 

allows an estimate of a (the power law spectral 

type of noise). However, if a 2 +l, then u B -2, 

and the T dependence becomes somewhat ambiguous as 

to the type of noise in this region. It is inter- 

esting to note that in the region a 2 +l, uya(r) 

is bandwidth (fh) dependent; i.e., the bandwidth 

of the measurement system will affect the value of 

uy(r), and furthermore, one may use the bandwidth 

dependence3 to determine the value of a (see also 

Appendix Ref. 2). 

Development of the Modified Allan Variance 

One may also write uys(t) in terms of a 

generalized autocovariance function: 

uy2(r) = & C4Ux(T) - UX(2T)l , 

where 

uxw = 2CRx(‘3> - RxW, (8) 

and where 

Rx(r) = cx(t+r) * x(t)> ) (9) 

the classical autocovariance function of x(t). 

Using the Fourier transforms of generalized func- 

tions, one may determine the coefficients relating 

the power spectral density to uys(t). Ref. 1 

gives these relationships. It is of interest to 

note that Ux(t) has the following approximate form 

in the region a 2 + 1 (see Appendix Ref. 2): 

U,(r) - a(a) 
[ 

I&--i -'+I - 1x1 "+I 1 (10) 
Hence, one notes that by changing the reciprocal 

bandwidth as well as T, one affects uya(t) in 

similar ways, depending on the value of a. From 

this, one should be able to deduce the value of a, 

since the bandwith dependence becomes stronger for 

a moving positive from +l, and the T dependence 

becomes stronger as a moves negative from +l. One 

can change the bandwidth in the hardware or in the 

software. In the past, it has typically been done 

in the hardware.3 James Snyder4 has shown that it 

is relatively easy to change the bandwidth in the 

data processing by a clever technique and we have 

followed his lead. In particular, we have chosen 

a new variance analysis scheme which coincides 

with the Allan variance at the minimum sample 

time, zo, (i.e., minimum data spacing), but which 

changes the bandwidth in the software as the 

sample time, T, is changed. 

Each reading of the time deviation, xi, has 

associated with it an intrinsic nominal (hardware) 

measurement system bandwidth, fh. Define 

th 
1 

= -; and similarly we may define a software 

bandw%, fs = fh/n, which is l/n times narrower 

than the hardware bandwidth. This software band- 

width can be realized by averaging n adjacent 

x 's; T i s = nrh, where ts = l/fs. We have defined 

a modified Allan variance which allows the recipro- 

cal software 
P 

andwidth to change linearly with the 

sample time, T: 

a n 

Mod uy'(r) = & ;x(~i+~~ 

i=l 

where T = nr,. Eq. 11 clearly coincides with Eq. 

6 for n = 1. One can see that, in general, we 

have formed a second difference of three time 

readings with each of the three being an average 

of n of the xi's (with non-overlapping averages). 

As n increases, the (software) bandwidth decreases 

and this bandwidth varies just as fs = fh/n. 

For a finite data set of N Ireadings of xi 

(i = 1 to N), we may write an estimate: 
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Mod cry?(r) = 3 
1 

tW(N-3n+l) l 

(12) 

lXj+2n - 2xj+n + 'j) ' 

I 

Eq. 12 is easy to program, but takes more time to 

compute than for uy(r). This is only of signifi- 

cance for the smaller computer or handheld calcu- 

1 ator. 

Comparisons, Tests. and Examples of Usage 

of the Modified Allan Variance 

We simulated various power law noise proces- 

ses, and applied Eq. 12. Shown in Fig. 1 art the 

resulting r-dependences of the modified Allan 

variances for a = -2, -1, 0, +l, and +2. The 

solid lines drawn art the anticipated or theoreti- 

cal slopes for the particular noise process. One 

sets excellent agreement for white noise PM and 

for flicker noise PM, and nominal agreement for 

the others. 

One can express Eq. 11 in terms of the gtn- 

eralized autocovarianct function: 

Mod uy2(r) = & 
1 

C4U,(r) - U,(2r)l - n 

+z (n-i)[-6Ux(ito) + 4Ux((n+i)ro) 

i-l 
(13) 

+ 4Ux((n-i)to) - Ux((2n+i)ro) 

- U,((2n-i)r,)l . 
1 

In the range -3 2 a 2 +l, one may write: 

Ux(') = a(a) . T -a+1 , (14) 

which when substituted in Eq. 13, and using Eq. 7, 

yields 

Mod uy2w = uy’(r) 1 ; + 1 . 
n2 an-Q+1 - (2n)-a+1 

n-l 
c (n-i) l 

i-l 
[-6f-a+1 + 4(n+j)-‘+l (15) 

-(2n+j)-‘+l + 4(n-j)-a+1 - (2n-j~-Q+1 
II 

Since we know that uys(r) is well behaved in this 

range and p = -a -1, it is of interest to look at 

the ratio: 

R(n) = Mod uy2(r)/uys(t) . 

As stated before, at n = 1 (T = ro) the ratfo is 

unity. One can evaluate Eq. 15 with a computer. 

A reasonable empirical fit may be formed, which is 

good to 0.5% or better of Eq. 15: 

R(n) = q+ (16) 

which approaches p/q asymptotically as n ap- 

proaches infinity, and is within 1% of p/q for 

n 2 8. Listed in Table 1 are the empirical values 

of p, q, and E and the quality of fit for the 

appropriate power law noi se processes. 

whit* FM 0 1 2 2 pwfe.3 .707 

Fllckw FM -1 99.9 140 2.35 w .021 

Imdom Y,lt FI -2 33 40 2.35 ckl ,908 

Flicker Walk F" -3 1 1 -_ pwrect 1 

The results of Table 1 are in reasonable 

agreement with simulated results of Fig. l(a) 

through l(e). The last row in Table 1, "flicker 

walk" frequency modulation, is out of the range of 

applicability of a, but the ratio, R(n), is still 

convergent. 
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The Ux(r) function for flicker noise PM is 

extremely complicated and has not been developed, 

but one can arrive at an empirical value for it. 

The U,(r) function is derivable for the other 

power law spectral processes. Table 2 gives the 

relationships between the time domain measure 

Mod uyz(r) and its power law spectral counterpart, 

given in Eq. 1. Also listed in the right hand 

column of Table 2 are the asymptotic values 

of R(n): 

TMLE 2 

lblr* 1yp* R(n) 

live m 
kd Oyl(') CDunt n-r 

WIlLI FM l 2 h. 3 ‘h 
2t-m3YG2 Exact 1 

* 

Flfckw PM 

uhitm Fn 

Fllct,r FM 

+1 5' 
l.036 l 3ln(wbrI 

(2x)r 11 Enplricrl 1 

R(n) 
0 ho' -27 Exvt 0.5 

-1 he1 2M2) . R(n) Evir(~41; Ex4ct 0.674 
Awfl4ble 

Rmdv Y4lt FM -2 hm2' v . R(n) mirlcrl; k4Ct 0.824 
Avail4bl4 

It is clear from Table 2 that Mod uy2(r) is 

very useful for white PM and flicker noise PM, but 

for u < +1 the conventional Allan variance, u 2(r). 

gives both an easier-to-interpret and an easizr-to- 

calculate measure of stability. 

It is interesting to make a graph of a versus 

p for both the ordinary Allan variance and the 

modified Allan variance. Shown in Fig. 2.is such 

a graph. This graph allows one to determine power 

law spectra for non-interger as well as interger 

values of a. The dashed line for the modified 

Allan variance has been intentionally moved to the 

left in Fig. 2 because for small values of n the 

value of p will appear to be slightly more negative 

that for uy2(z), even though for large n, they 

both approach the same slope (i.e., the same 

values of p). In fact, in the asymtotic limit, 

the equation relating p and a for the modified 

Allan variance is 

a = -p -1, for -3 < a < +3 . 

* See Appendix Note X 34 

(17) 

The value of p = -4 for a = +3 was verified empir- 

ically with simulated data, and it appears that 

for a > +3, p remains at -4. 

A direct application' for using the modified 

Allan variance recently arose in the analysis of 

atomic clock data a5 received from a Global 

Positioning System (GPS) satellite. We were 

interested in knowing the short-term characteris- 

tics of the newly developed, high-accuracy NBS/GPS 

receiver, as well as the propagation fluctuations. 

Fig. 3 shows both uy2(r) and Mod uy2(r) for com- 

parison. Using Mod uy2(r), we can tell that the 

fundamental limiting noise process involved in the 

system is white noise PM with the exciting result 

that averaging for four minutes can allow one to 

ascertain time difference to better than one 

nanosecond excluding other systematic effects. 

Conclusion 

We have developed a supplemental measure, the 

"Modified Allan Variance" (Mod uy2(r)), which has 

very useful properties when analyzing oscillator 

or signal stability in the presence of white noise 

phase modulation or flicker noise phase modulation. 

It also works reasonably well 'as a stability 

measure for other commonly occuring noise processes 

in precision oscillators. 

We would recommend that for most time domain 

analysis, u 2(r> 
Y 

should be the first choice. If 

u 2(r) 
Y 

depends on r as X-I, then the modified 

Allan variance can be used as a substitute to help 

remove the ambiguity as to the noise processes. 
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Fig la-e. Mod uy(r) using Eq. 12 was calculated for different sample times for 

independently generated and simulated noise processes, which were 

white phase noise, flicker phase noise, white frequency noise, 

flicker frequency noise, and random waTk frequency noise, respec- 

tively. Mod uy(r) was computed for 399 data points in each case. 

One sees the excellent fit to the theory for white phase noise and 

flicker phase noise, an important new contribution in the ability to 

characterize oscillators having these noise processes. 
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I. INTRODUCTION 

Many works [ 11 -[S ] have been devoted to the characteriza- 
tion of the frequency stability of ultrastable frequency sources 
and have shown that the frequency noise of a generator can be 
easily characterized by means of the “two-sample variance” 
(21 of frequency fluctuations, which is also known as the 
“Allan variance” [ 2] in the special case where the dead time 
between samples is zero. 

An algorithm for frequency measurements has been devel- 
oped by J. J. Snyder [6 1, [ 71. It increases the resolution of 
frequency meters, in the presence of white phase noise. It has 
been considered in detail by D. W. Allan and J. A. Barnes [8]. 
They have defined a function called the “modified Allan 
variance” and they have analyzed its properties for the com- 
monly encountered components of phase or frequency fluctu- 
ations [ 3 1. For that purpose, the authors of [ 8 ] have expressed 
the modified Allan variance in terms of the autocorrelation of 
the phase fluctuations. For each noise component, they have 
computed the modified Allan variance and deduced an empiri- 
cal expression for the ratio between the modified Allan variance 
and the AlIan variance. 

In this paper, we show that the analytical expression of this 
ratio can be obtained directly, even for the noise components 
for which the autocorrelation of phase functions is not defined 
from the mathematical point of view. We give the theoretical 
expressions and compare them with those published in [ 8 ] . 

The precision of the estimate of the modified Allan variance 
is discussed and results related to white phase and white fre- 
quency noises are presented. 

II. BACKGROUND AND DEFINITIONS 

In the time domain, the characterization of frequency stability 
is currently achieved by means of the two-sample variance 
[ 21 (a’ (2, T, 7)) of fractional frequency fluctuations. It is 
define as rr 

(a$(2, T, 7)) = + ((yk+r - jg*) (1) 

where the quantity rk is the average value of the fractional fre- 
quency fluctuations y(f) over the time interval (tk, rk + r) 
such that 

, I-rk+T 

J y 0) dt. 
tk 

(2) 

In (2), tk represents the moment at which the kth observation 
time interval starts. We have 

lk =rO +kT, T>T (3) 

where te is an arbitrary time origin, k is a positive integer, and 
T is the time interval between the beginning of two successive 
observations. 

In all the following, we assume that the dead time between 
samples is zero. We then have 

T = r. (4) 

In this special case, the two-sample variance is well known as 
the Allan variance u$ (T) 

u;(7) = (0;(2,7,7)). (5) 

The relation between the AlIan variance and y(t) can be ex- 
pressed as 

(I- 

tk+27 

I 

t&+7 2 

u;(7)= $ Y 0) dt - )> rtt)dt . (6) 
tk*l rk 

Equation (6) shows that u:(7) is proportional to the true vari- 
ance of the output of a linear filter with input signal y(r) and 
impulse response hi (t) in Fig. 1. 

b h,(t) 

Fig. 1. Variations with time of the linear filter impulse response which 
represents the signal processing for the Allan variance calculation. 

1 

- 

Fig. 2. Illustration of the algorithm considered for the measurement of 
periodic signal frequency. 

The fractional frequency fluctuations y(t) are actually welI 
described by a conventional model which consists of a set of 
five independent noise processes [21. Taking into account the 
finite bandwidth of the processed signal and assuming a single 
pole filter, the one-sided power spectral density S, ( f) of y (t) 
can be written as 

S,(f) = ha 
fQ 

1+ f2 
0 

(7) 

C 

where coefficients ha do not depend on f. The integer (Y equals 
2, 1, 0, - 1, and -2. f, is the 3-dB bandwidth of the hardware 
filter. 

III. THE MODIFIED ALLAN VARIANCE 

The main property of the algorithm developed by J. J. 
Snyder is to increase the precision on the measure of periodic 
signal frequency, in presence of white phase noise (71. It con- 
sists in dividing a time interval 7 into R cycles of clock period 
TO such as 

7=nro. (8) 

Therefore, from a given observation time interval of duration 
27, n overlapping time intervals of duration r can be obtained, 
as depicted in Fig. 2. Another property of this algorithm is to 
reduce the total observation time by a factor n/2. 

Following this way, Allan and Barnes have introduced the 
“modified AlIan variance” [ 8 I such as 

It can be easily seen from (9) that the calculation of each 
statistical sample involved in the definition of Mod U:(T) 
requires a signal observation of duration 37. 

The impulse response h,(t) of the equivalent linear filter 
consists in finite sum of n shifted impulse responses hi(r). 
We have 

hi(t) = f g hI(C - iTo). (10) 
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TABLE I 
ANALYTICAL EXPRESSION FOR THE MODIFIED ALLAN VARIANCE WITHIN 

CONDITION 27rj,ro >> 1 

NOISE TYPE a Mod +) 

WHITE P M 2 3 h2 fc 

8 "7 r2 

FLICKER P M 1 hl 
4nZnfZz3nen(2nfcr) + kfl(n-k) 4Q5-7 - 1) -en (+ 

I 

n-1 

I 

n2 
2 

- 1) 

WHITE F M 0 
h 
&“2+1 

2: -7 

2h-lf.n2 4n2 
-3n*l n-l 

(k l h)Cn(k +2n)-(k - 2n)Pn(2n -k) 
1 

FLICKER F H -1 

,z 
1 

2 l &y x kfI(“-k) X3 I[ 
+; (k +n)(k -2n)Cn(k +n) +; 

- (.-,k)t.ik-;,]I] 

RANDOM WALK F M - 2 

In order to illustrate ( lo), variations with time of the shifted 
functions hi(r - ire) and of the impulse response h,(t) are 
represented in Fig. 3(a) and (b), respectively, for n = 10. 

For n = 1, the Allan variance and the modified one are equal. 
We have 

Mod u;(r) = a;(r). 

One can express (9) in terms of the spectral density S,,(f). 
We have 

Modo;(r)=--& 7 S,(f) sin4 (TfnTo) df 

n-1 
+ 2 c (n - k) 7 S,(f 1 cos wmo) 

k=1 

1. (12) 

It should be noted that the integrals involved in (12) are con- 
vergent for each noise component. The analytical expression 
for the modified Allan variance can therefore be deduced 
directly from this equation. 

In the following, it is assumed that the condition 2nf, 70 >> 1 
is fulfilled. This means that the hardware bandwidth of the 
measurement system must be much larger than the reference 
clock frequency. 

We have calculated the modified Allan variance for each 
noise component. Results are reported in Table I. It appears 
that the analytical expression for Mod u:(r) is relatively simple 
except for flicker phase and flicker frequency noises where it 
is given as a finite sum of functions depending on n. In order 
to compare the Allan variance with the modified one, we 

-1. 
T  

* 

@I 

Fig. 3. (a) The impulse response h,(r), associated with the modified 
Allan variance calculation, represented as a sum of n shifted impulse 
response hi(t). It is assumed n = 10. (b) Variations with time of 
the impulse response h,(t), in the special case where n = 10. 

* See Appendix Note # 35 
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TABLE II 
ASALYTC~L EXPRESSIONS AND ASYUP~OTICAL VALUS FOR R(n) 

(Results Are Valid within Condition Zlrf,ro >> I) 

a R(n) lim, _ I R(n) 

2 1 
n 

0 

1 i2 n+ 

[ 

1 n-1 2 
x 0 

3 2ll( 27fc"To) 
Z (n-k) 4 en ({ 

k=l 1 k 
- :) - in (% - 1) 

k 
II 

2 
0 y 0.5 

- ! 

1 4nZ-3n+1 

I 

n-1 

7 2 
+$JX kflb-Ux $ 

1 [ 
(k +Zn)Ln(k +Zn)-(k -2n)m(Zn - k)l 

+; (k+n)(k-Zn)en(k+n)+ ;(k-n)(k +Zn)en,k-n’+3k*tnk-k[(n+Zk)f.n(k+ 

- (n -2k)W k - ;’ 
0.787 

- 2 0.825 

consider the ratio R (n) defined in [ 8 ] as 
R (n) = Mod +~)/a; (7). (13) 

4Rtnl 

The analytical expressions for R(n), deduced from Table I, 
are reported in Table II. One can see that R(n) does not 
depend on the product fcro, except for flicker phase noise 
modulation. The asymptotic values of R(n) are also listed in 
Table II. 

Fig. 4 depicts the variations of R(n) with n. It shows that, 
for large values of n, white phase and flicker phase noise 
modulations have different dependences. As outlined in [8 1, 
this gives a means to easily distinguish these two noise pro- 
cesses, in the time domain. For large n, and for a = 0, - 1, - 2, 
R (n) remains a constant. Consequently the Allan variance can 
be deduced from the modified one, for these noise processes. 

A comparison with results of [8] shows a good agreement 
for a = 2, 0 and - 2. But, for Q = 1 and - 1, our expressions for 
the modified Allan variance and ratio R (n) disagree, especially 
for flicker phase noise modulation. This discrepancy might 
be due to the fact that in [ 81, Mod U;(T) is expressed in terms 
of the autocorrelation function of phase fluctuations which 
is not defined for a = 1. 

a.2 
\ 

n 
0 

1 10 lo2 

IV. UNCERTAINTY ON THE ESTIMATE OF THE 
MODIFIED ALLAN VARIANCE 

Fig. 4. Variations with n of the ratio R(n), for fractional frequency 
fluctuations with power law spectrum S,(f) = h, . (l/l + (f/f&2)fQ, 
within condition 2nf,ro >> 1. (*For Q = +l, R(n) is a function off, 
and rg. The reported variations are for 2nfcro = 104.) 

Equation (9) shows that the definition of the modified Allan 
variance theoretically implies an infinite set of time intervals. 

Practically, one can only estimate this quantity from a finite 
set of m successive cycles similar to the one depicted in 
Fig. 3(b). 

Let Mod G;(T) be the estimated modified Allan variance 
(EMAV) such as 

Mod 6; (7) (14) 
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where 

I 
zo+(f+zn)To+(k-l)3nf0 

Ai,k = Y 0) dt 

ro + (i+n)so + (k - 1)3mo 

-I 

rO+(l+n)sg+(k-l)mq 

y 0) dt. (15) 
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The EMAV is a random function of m. Its calculation requires ante has been studied and numerical values have been reported 
an observation time of duration 3m7. for white phase and white frequency noise modulations. 

We consider e, the fractional deviation of the EMAV relative In conclusion, the modified Allan variance appears to be well 
to the modified Allan variance defined as follows: suited for removing the ambiguity between white and flicker 

phase noise modulation. Nevertheless, the calculation of the 
E’ 

Mod G;(r) - Mod $,(r) 

Mod u;(r) * 
(16) modified Allan variance requires signal processing which is 

complicated, compared to the Allan variance. In the presence 

The standard deviation o(e) of e defines the relative uncertainty 
of white or flicker phase noise, the Allan variance cannot be 

on the measurement of the modified Allan variance, due to the 
easily deduced from the modified Allan variance. Further- 

finite number of averaging cycles. We have 
more, for a given source exhibiting different noise components, 
the determination of the Allan variance from the modified 
one is difficult to perform. For most of time-domain measure- 

U(E) = Mod i2 (7) icr’ IMod ~;(d)1’2 (17) ments, the use of the Allan variance is preferred. 
Y 

where o2 [Mod s;(r)] denotes the true variance of the EMAV ACKNOWLEDGMENT 

such as The authors would like to express their thanks to Dr. Claude 

u2 IMod 3(7)1 =([Mod G;(r)12>- [Mod r$,(r)]‘. (18) 
Audoin for constructive discussions and valuable comments on 
the manuscript. 

We assume that the fluctuations y(r) are normally distributed 
[ IO]. One can therefore express ([Mod $; (7) I ’ ) as REFERENCES 

m’([Mod G;(T)]‘) 
I1 1 D. W. Allan. “Statistics of atomic frequency standards,” Prof. . - 

IEEE, vat 54, pp. 221-230, Feb. 1966. 
=(m2 + 2m) [Mod u$(r)12 I21 J. A. Barnes et 01.. “Characterization of frequency stability,” 

L ’ IEEE Z&u. Instn&. Meas., VOL IM-20, pp. 105-120, May 1971. 

+4my(m-p) 2”5(n-i)I,+do 1 1 
2 [3] L. S. Cutler and C. L. Searle, “Some aspects of the theory and (1% measurement of frequency fluctuations in frequency standards,” 

p-1 t-1 ROC IEEE, VOL 54, pp. 136-154, Feb. 1966. 
[4] J. Rutman, “Characterization of phase and frequency instabilities 

where I,, are integrals which depend on n and on the noise pr& in precision frequency sources: Fifteen years of progress,” hoc. 
cess. We have IEEE, vat 66, pp. 1048-1075, Sept 1978. 

I51 P. Lesane and C. Audoin. “Effect of dead-time on the estimation 
* ’ of the -two-sample variance,” IEEE iPans. In~m. Meas., VOL 

8n2~2n21 = 
- S,(f) 

?I - cos 6nnpfro IM-28, pp. 6-10, Mar. 1979. 
f2 [6] J. J. Snyder, “Algorithm for fast digital analysis of interference 

fringes,“AppL Opt., vat 19, pp. 1223-1225, Apr. 1980. 
X { 6 cos 2nfro i - 4 cos 2nfro(i + n) [71 -* “An ultra-high resolution frequency meter,” in Proc. 35th 
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- 4 COs 27rf70(i - n) + cos 27rfro(i + 2n) DD. 464-469. 

+ cos 2nfTo(i - 2n)) df. (20) 
I 8] b: W. Allan and J. A. Barnes, “A modified Allan varhnce with 

increased oscillator characterization ability,” in ROC. 35th Annu. 

For each noise component, the expression for o(e) can be 
Symp. Frequency Control (Fort Monmourh, NJ), 1981, pp. 470- 
474. 

deduced from the calculation of integrals involved in (20). “Processus de diffusion et stationnarite,” CR. 
These expressions are generally lengthy and complicated except 

I 91 B. Picinbono, 
Acad. Sci., VOL 271, pp. 661-664, Oct. 1970. 

for white phase and white frequency noise modulations, where 
_ - . . . 

[lo] P. Lesage and C. Audoin, “Characterization of trequency staou- 
integrals I,, equal zero. We have limited the present analysis ity: Uncertainty due to the finite number of measurements,” 
to these two noise components. We get for U(E) IEEE 7hw. Instrum. Meus., VOL IM-22, pp. 157-161, June 1973. 

u(r) = 1 
m’ 

for Q = 2 and 0. (21) 

We now compare (2 1) with previously published results related 
to the estimate of the AUan variance [S]. For a given time 
observation of duration 3mr, it can be easily deduced from 
[ 5 ] that the relative uncertainty on the estimate of the Allan 
variance varies asymptotically as 1.14 m-Ii2 and 1.0 me112 for 
a = 2 and 0, respectively. For these two noise components, the 
uncertainty on the EMAV is larger than the uncertainty on the 
estimated Allan variance, but of the same order of magnitude. 

V. CONCLUSION 

We have calculated the analytical expression for the modi- 
fied Allan variance for each component of the model usually 
considered to characterize random frequency fluctuations in 
precision oscillators. These expressions have been compared 
with previously published results and the link between the 
Allan variance and the modified Ahan variance has been 
specified. 

The uncertainty on the estimate of the modified AIlan vari- 
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From: Proceedings of the 15th Annual PTTI Meeting, 1983. 

THE MEASURRMENT OF LINEAR FRRQUENCY DRIFT IN OSCILLATORS 

James A. Barnes 
Acstron, Inc., Austin, Texas 

ABSTRACT 

A linear drift in frequency is an important element in most 
stochastic models of oscillator performance. Quartz crystal 
oscillators often have drifts in excess of a part in ten to 
the tenth power per day. Even commercial cesium beam devices 
often show drifts of a few parts in ten to the thirteenth per 
year. There are many ways to estimate the drift rates from 
data samples (e.g., regress the phase on a quadratic; regress 
the frequency on a linear; compute the simple mean of the 
first difference of frequency; use Kalman filters with a 
drift term as one element in the state vector; and others). 
Although most of these estimators are unbiased, they vary in 
efficiency (i.e., confidence intervals). Further, the esti- 
mation of confidence intervals using the standard analysis 
of variance (typically associated with the specific estima- 
tion technique) can give amazingly optimistic results. The 
source of these problems is not an error in, say, the re- 
gressions techniques, but rather the problems arise from 
correlations within the residuals. That is, the oscillator 
model is often not consistent with constraints on the analy- 
sis technique or, in other words, some specific analysis 
techniques are often inappropriate for the task at hand. 

The appropriateness of a specific analysis technique is crit- 
ically dependent on the oscillator model and can often be 
checked with a simple "whiteness" test on the residuals. 
Following a brief review of linear regression techniques, 
the paper provides guidelines for appropriate drift estima- 
tion for various oscillator models, including estimation of 
realistic confidence intervals for the drift. 

I. INTRODUCTION 

Almost all oscillators display a superposition of random and deterministic 
variations in frequency and phase. The most typical model used isill: 

X(t) = a + b-t + Dr*t2/2 + 4(t) (1) * 

where X(t) is the time (phase) error of the oscillator (or clock) relatl?e to 
some standard; a, b, and Dr are constants for the particular clock; and q(t) is 
the random part. X(t) is a random variable by virtue of its dependence on 4(t). 

* See Appendix Note # 36 
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Even though one cannot predict future values of X(t) exactly, there are often 
significant autocorrelations within the random parts of the model. These cor- 
relations allow forecasts which can significantly reduce clock errors. Errors 
in each element of the model (Eq. 1) contribute their own uncertainties to the 
prediction. These time uncertainties depend on the duration of the forecast 
interval, 'c, as shown below in Table 1: 

TABLE 1. GROWTH OF TIME ERRORS 

MODEL ELEMENT CLOCK 
NAME PARAMETER 

RMS TIME 
ERROR 

Initial Time Error a Constant 

Initial Freq Error b - 'I 

Frequency Drift 

Random Variations 

Dr 

4J(t) 

- T2 

_ ,3/h 

*The growth of time uncertainties due to the random component 
can have various time dependencies. The three-halves power-;az(t)' 
shown here is a "worst case" model.[21 

One of the most significant points provided by Table 1 is that eventually, the 
linear drift term in the model over-powers all other uncertainties for suffi- 
ciently long forecast intervals! While one can certainly measure (i.e., esti- 
mate) the drift coefficient, Dr, and make corrections, there must always remain 
some uncertainty in the value used. That is, the effect of a drift correction 
based on a measurement of. Dr, is to reduce (hopefully!) the magnitude of the 
drift error, but not remove it. Thus, even with drift corrections, the drift 
term eventually dominates all time uncertainties in the model. 

As with any random process, one wants not only the point estimate of a para- 
meter, but one also wants the confidence interval. For example, one might be 
happy to know that a particular value (e.g., clock time error) can be estimated 
without bias, he may still want to know how large an error range he should 
expect. Clearly, an error in the drift estimate (see Eq. 1) leads directly to 
a time error and hence the drift confidence interval leads directly to a confi- 
dence interval for the forecast time. 

II. LEAST SQUARES REGRESSION OF PHASE ON A QUADRATIC 

A conventional least squares regression of oscillator phase data on a quadratic 
function reveals a great deal about the general problems. A slight modifica- 
tion of Eq. 1 provides a conventional model used in regression analysis[3]: 

X(t) = a + bet + cot2 + Q(t) (2) 
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where c = Dr/2. In regression analysis, it is customary to use the symbol “Y” 
as the dependent variable and “X” as the independent variable. This is in con- 
flict with usage in time and frequency where “X” and “Y” (time error and fre- 
quency error, respectively) are dependent on a coarse measure of time, t, the 
independent variable. This paper will follow the time and frequency custom even 
though this may cause some confusion in the use of regression analysis text books. 

The model given by Eq. 2 is complete if the random component, $(t), is a white 
noise (i.e., random, uncorrelated, normally distributed, zero mean, and finite 
variance). 

III. EXAMPLE 

One must emphasize here that ALL results regarding parameter error magnitudes 
and their distributions are totally dependent on the adequacy of the model. A 
primary source of errors is often autocorrelation of the residuals (contrary to 
the explicit model assumptions). While simple visual inspection of the resi- 
duals is often suf f iclent to recognfze the autocorrelation problem, ‘*whiteness 
tests” can be more objective and precise. 

This section analyzes a set of 94 hourly values of the time difference between 
two oscillators. Figure 1 is a plot of the time difference (measured in micro- 
seconds) between the two oscillators. The general curve of the data along with 
the general expectation of frequency drift in crystal oscillators leads one to 
try the quadratic behavior (Model 111; models #2 and #3 discussed below). While 
it is not common to find white phase noise on oscillators at levels indicated on 
the plot, that assumption will be made temporarily. The results of the regres- 
sion are summarized in a conventional Analysis of Variance, Table 2. 

TABLE 2. ANALYSIS OF VARIANCE QUADRATIC FIT TO PEASE 
(Units: seconds squared) 

SOURCE SUM OF SQUARES 

Regression 2.323-g 

d.f. 

3 

MEAN SQUARE 

Residuals 4.26E-12 91 4.68E-14 

Total 2.3293-g 94 2.483-11 

Coefficient of simple determination 0.99713 

Parameters : 

a^ = l.l0795E-5 (seconds) t-ratio = 161.98 

b  ̂ = 1.4034E-10 (sec/sec) t-ratio - 152.02 

c  ̂ = -3.7534E-16 (sec/sec2) t-ratio = -143.51 
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lb 2; = -7.5073-16 (about -6.5E-11 per day) 
Std. Error = 0.052313-16 

(Note: â  is the value estimated for the a-parameter, etc.) 

The Analysis of Variance, Table 2, above suggests an impressive fit of the data 
to a quadratic function, with 99.71% of the variation5 in the data “explained” 
by the regression. The estimated drift coefficient, Dr, is -7.5073-16 (sec/sec2) 
or about -6.5E-11 per day --- 143 times the indicated standard error of the 
estimate. However, Figure 2, a plot of the residuals, reveals significant auto- 
correlations even visually and without sensitive tests. (The autocorrelations 
can be recognized by the essentially smooth variations in the plot. See Fig. 5 
as an example of a more nearly white data set .) It is true that the regression 
reduced the peak-to-peak deviations from about 18 microseconds to less than one 
microsecond. It is also true that the drift rate is an unbiased estimate of the 
actual drift rate, but the model assumptions are NOT consistent with the auto- 
correlation visible in Fig. 2. This means that the confidence intervals for the 
parameters are not reliable. In fact, the analysis to follow will show just how 
extremely optimistic these intervals really are. 

At this point we can consider at least two other simple analysis schemes which 
might provide more realistic estimates of the drift rate and its variance. Each 
of the two analysis schemes has its own implicit model; they are: 

(2) Regress the beat frequency on a straight line. 
(Model: Linear frequency drift and white FM.) 

(3) Remove a simple average from the second difference of the phase. 
(Model: Linear frequency drift and random walk FM. ) 

Continuing with scheme 2, above, the (average) frequency, y(t), is the first 
difference of the phase data divided by the time interval between successive 
data points. The regression model is: 

%t> = b + Dr*t + s(t) (3) * 

where E(t) = [+(t + -co) - +(t)l/To. Following standard regression procedures as 
before, the results are summarized in another Analysis of Variance Table, Table 
3. 

TABLE 3. ANALYSIS OF VARIANCE LINEAR FIT TO FREQUENCY 
(Units: sec2/sec2) 

SOURCE SUM OF SQUARES d.f, MEAN SQUARE 

Regression 1.879E-18 2 

Residuals 2.084E-20 91 2.298-22 

Total 1.899E-18 93 2.042E-20 

(Note: Taking the first differences of the original data set reduces the 
number of data points from 94 to 93.) 

* See Appendix Note # 37 
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Coefficient of simple determination 0.9605 

Parameters : 

b^ - l.O49E-10 (sec/sec) t-ratio = 3.32 

Er = -7.635E-16 (sec/sec2) t-ratio = -4.70 
Std. Error = 0.16243-16 (sec/sec2) 

While the drift rate estimates for the two regressions are comparable in value 
(-7.5073-16 and -7.635%16), the standard errors of the drift estimates have 
gone from 0.0523-16 to O.l62E-16 (a factor of 3). The linear regression’s coef- 
ficient of simple determination is 96.05% compared to 99.17% for the quadratic 
fit. Figure 3 shows the residuals from the linear fit and they appear more 
nearly white. A cumulative periodogram[4] is a mOre objective test of white- 
ness , however. The periodogram, Fig. 4, does not find the residuals acceptable 
at all. 

IV. DRIFT AND RANDOM WALK FM 

In the absence of noise, 
Dr*ro2. 

the second difference of the phase would be a constant, 
If one assumes that the second difference of the noise part is white, 

then one has the classic problem of estimating a constant (the drift term), in 
the presence of white noise (the second difference of the phase noise). Of 
course, the optimum estimate of the drift term is just the simple mean of the 
second difference divided by ro2. The results are summarized below, Table 4: 

TABLE 4. SIMPLE MEAN OF SECOND DIFFERENCE PEASE 

Simple mean & = -6.709E-16 t-ratio - -2.45 

Degrees of Freedom - 91 

Standard Deviation s  ̂ = 26.2405E-16 

Standard Deviation of the Mean = 2.73583-16 

Figure 5 shows the second difference of the phase after the mean was subtracted. 
Visually, the data appear reasonably white, and the periodogram, Fig. 6, cannot 
reject the null hypothesis of whiteness. Now the standard error of the drift 
term is 2.735E-16, 52 times larger than that computed for the quadratic fit! 
Indeed, the estimated drift term is only 2.45 times its standard error. 

v. SUMMARY OF TESTS 

The analyses reported above were all performed on a single data set. In order 
to verify any conclusions, all three analyses used above were performed a total 
of four times on four different data sets from the same pair of oscillators. 
Table 5 summarizes the results: 
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TABLE 5. SUMMARY OF DRIFT ESTIMATES 
(Units of l.E-16 sec/sec2) 

ESTIMATION 
PROCEDURE 
6 MODEL 

Quad Fit 
(White PM 
and Drift) 

COMPUTED 
DRIFT STANDARD 

ESTIMATE ERROR 

-7.507 .0523 

-8.746 .0493 No 

-6.479 .0645 No 

-6.468 .0880 No 

PASS 
WHITENESS 

TESTS? 

No 

1st Difference 
Linear Fit 
(White FM 
and Drift) 

-7.635 .162 No 

-8.558 .206 No 

-6.443 .192 No 

-6.253 .295 No 

Second Difference 
Less Mean 
(Random Walk 
FM and Drift) 

-6.710 2.736 Yes 

-7.462 9.335 No 

-6.870 3.424 Yes 

-6.412 3.543 Yes 

One can calculate the sample means and variances of the drift estimates for each 
of the three procedures listed in Table 5, and compare these "external" estimates 
with those values listed in the table under "Computed Standard Error," the 
"internal" estimates. Of course the sample size is small and we do not expect 
high precision in the results, but some conclusions can be drawn. The compari- 
sons are shown in Table 6. 

It is clear that the quadratic fit to the data displays a very optimistic inter- 
nal estimate for the standard deviation of the drift rate. Other conclusions 
are not so clear cut, but still some things can be said. Considering Table 5, 
the "2nd Diff - Mean" residuals passed the whiteness test three times out of 
four. The external estimate of the drift standard deviation lies between the 
internal estimates based on the first and second differences. Since the oscil- 
lators under test were crystal oscillators, one expects flicker FM to be present 
at some level. One also expects the flicker FM behavior to lie between white FM 
and random walk FM. This may be the explanation of the observed standard devia- 
tions, noted in Table 6. 
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TABLE 6. STANDARD DEVIATIONS 

PROCEDURE 
(Model) 

Quad Fit (White PM) 

1st Diff - Lin 
(White FM) 

2nd Diff - Mean 
(Rand Wlk FM) 

EXTERNAL ESTIMATE INTERNAL ESTIMATE 
(Std. Dev. of Drift (RMS Computed Std. 
Estimates from Col. Dev. Col. 113, 
12, Table 5) Table 5) 

1.08 0.065 

1.08 0.203 

0.44 5.45 

VI. DISCUSSION 

In all three of the analysis procedures used above, more parameters than just 
the frequency drift rate were estimated. Indeed, this is generally the case. 
The estimated parameters included the drift rate, the variance of the random 
(white) noise component, and other parameters appropriate to the specific model 
(e.g., the initial frequency offset for the first two models). If these other 
parameters could be known precisely by some other means, then methods exist to 
exploit this knowledge and get even better estimates of the drift rate. The 
real problems, however, seem to require the estimate of several parameters in 
addition to the drift rate, and it is not appropriate to just ignore unknown 
model parameters. 

To this point, we have considered only three, rather ideal oscillator models, 
and seldom does one encounter such simplicity. Typical models for commercial 
cesium beam frequency standards include white FM, random walks FM, and frequency 
drift. Unfortunately, none of the three estimation routines discussed above are 
appropriate to such a model. This problem has been solved in some of the recent 
work of Jones and Tryon[5]s[6]. Their estimation routines are based on Kalman 
Filters and maximum likelihood estimators and these methods are appropriate for 
the more complex models. For details, the reader is referred to the works of 
Jones and Tryon. 

Still left untreated are the models which, in addition to drift and other noises, 
incorporate flicker noises , either in PM or FM or both. In principle, the 
methods of Jones and Tryon could be applied to Kalman Filters which incorporate 
empirical flicker modelsL7]. To the author's knowledge, however, no such analy- 
ses have been reported. 

VII. CONCLUSIONS 

There are two primary conclusions to be drawn: 

(1) The estimation of the linear frequency drift rates of oscillators 
and the inclusion of realistic confidence intervals for these 
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estimates are critically dependent on the adequacy of the model 
used and, hence the adequacy of the analysis procedures. 

(2) The estimation of the drift rate must be carried along with the 
estimation of any and all other. model parameters which are not 
known precisely from other considerations (e.g., initial fre- 
quency and time off sets, phase noise types, etc. ) 

More and more, scientists and engineers require clocks which can be relied on to 
maintain accuracy relative to some master clock. Not only is it important to 
know that on the average the clock runs well, but it is essential to have some 
measure of time imprecision as the clock ages. For example, the uncertainties 
might be expressed as, say,, 90% certain that the clock will be within 5 micro- 
seconds of the master two weeks after synchronization. Such measures are what 
statisticians call “interval estimates” (in contrast to point estimates) and 
their estimations require interval estimates of the clock’s model parameters. 
Clearly, the parameter estimation routines must be reliable and based on sound 
measurement practices. Some inappropriate estimation routines can be applied 
to clocks and oscillators and give dangerously optimistic forecasts of 
performance. 
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APPENDIX A 

REGRESSION ANALYSIS 
(Equally Spaced Data) 

We begin with the continuous model equation: 

X(t) - a + bet + c-t* + +(t) (Al) 

We assume that the data is in the form of discrete readings of the dependent 
variable X(t) at the regular intervals given by: 

t = nro 

Equation (Al) can then be written in the obvious form: 

X, - a + ~~ b*n + ro2 c-n* + +(nro) 

for n = 1, 2, 3 . . . . N. 

Next, we define the matrices: 

1 -1 N = 

1 1 1. 

1 2 4 

11 3 9 

1 1 1 ** 1 3 N 2 1 4. 4 9 N* 1. I. . I. w I. 

-[ T- 0 100 0 To 0 To2 0 1 

bn 
1 

(NT)‘X = -- TO !i! xn n 
1 

= T l 

Xl 
X2 

X3 

-II 
x = 

I. 

.I 

XN 

- 
N 

c XII 
1 

n 

I 

2 

= T* 

SX 

S nx 

S nnx 

(A*) 

(A31 
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where four quantities must be calculated from the data: 

SX - F %I snnx = T X, n2 
n=l n=l 

snx = y X,n S xx = F &-I2 
n=l n=l 

Define 

With these definitions, Eq. A3 can be rewritten in the matrix form: 

x = NTB + 4 --- (A4) 

and the coefficients, B, which minimize the squared errors are given by: 

a^ 

E =i 6 = 2 l ( N’N )-’ l ( N’X ) 

2 

(A5) 

The advantage of evenly spaced data for these regressions is that, with a bit of 
algebra, the matrix, ( N'N )'l, can be written down in closed form: 

( N’N )-’ = 

where 

A B C 

B D E 

C E F 

A = 3 [3 (N + 1) + 21 

B = -18 (2N + 1) 

c = 30 

I l l/G (A6) 

D = 12 (2N + 1) (8N + 11) / [(N + 1) (N + 2)] 

E = -180 / (N + 2) 

F= 180 / [(N + 1) (N + 2)1 
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and 

G = N (N - 1) (N - 2) 

Also, the inverse of T is just: 

1 0 0 

r -1 P [ 0 l/r, 0 0 0 1 l/T,2 

The complete solution for the regression parameters can be summarized as follows: 

There are four quantities which must calculate from the data: 

SX = F xn snnx - y X, n2 
n-l n-l 

snx m F Xnn S xx = y xn2 
n=l n=l 

for n = 1, 2, 3, . . . . N. Based on these four quantities, the regression param- 
eters are calculated from the seven following equations: 

A 

a = (A S, + ~~ B Snx + To2 G Snnx) / G 

G= (B Sx + TO D Snx + ~0~ E Snnx) / (G ToI 

h 
c= (CS, + f. E Snx + ~~~ F &xl / (G ~0 2, 

2 = (Sxx - a  ̂ S, - TO b  ̂ Snx - ~0~ c  ̂ Snnx) / (N - 3) 

&2 P 22 D / (G T,~) 

&2 = $2 F / (G ~~~~ 

567 

TN-280 



whefe the coefficients A, B, C, etc., are given by: 

A - 3 [3N (N + 1) + 21 

B = -18 (2N + 1) 

c - 30 

D = 12 (2~ + 1) (8~ + ii) / [(N + 1) (N + 211 

E = -180 / (N + 2) 

F = 180 / [(N + 1) (N + 2)] 

and 

G = N (N - 1) (N - 2). 

In matrix form, the error variance for forecast values is: 

Var (jik) = 2 [l + N& 

where Nk’ = [l no no] and ~~ no is the date for the forecast point, $. That 
is, no = N + K and K is the number of lags past the last data point at lag N. 
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APPENDIX B 

REGRESSIONS ON LINEAR AND CUBIC FUNCTIONS 

The matrixes (N'N)'l for the linear fit and cubic fit, which correspond to Eq. 
A6 in AppendixTare as follows: 

For the linear fit: 

A 
(N'N)'1 = 

B 

where 

A = 2 (2N + 1) 

B = -6 

c - 12 / (N + 1) 

and 

D = N (N - 1) 

For the cubic fit: 

(N'N)'l = 

where 

B 

7 
l/D 

C 

A B C D 

B E F G 

C F H I 

D G I J 

A = 8 (2N + 1) (N + N + 3) 

B = -20 (6N2 + 6N + 5) 

c = 120 (2N + 1) 

D '= -140 

1 
l/K 

E = 200 (6~4 + 27 ~3 + 42 N2 + 30 N + 11) / L 

F = -300 (N + 1) (3N + 5) (3N + 2) / L 

G = 280 (6N2 + 15N + 11) / L 
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H - 360 (2N + 1) (9N + 13) / L 

I - -4200 (N + 1) / L 

J - 2800 / L 

and 

K - N (N - 1) (N - 2) (N - 3) 

L = (N + 1) (N + 2) (N + 3). 

The restrictions on these equations are that the data is evenly spaced begin- 
ning with n - 1 to n - N, and no missing values. For error estimates (and their 
distributions) to be valid, the residuals must be random, uncorrelated, (i.e., 
white). 
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QUESTIONS AND ANSWERS 

MR. ALLAN: 

We have found the second difference drift estimator to be useful for 
the random walk FM process. One has to be careful when you apply it, 
because if you use overlapping second differences, for example, if 
you have a cesium beam, and you have white noise F'M out to several 
days and then random walk FM beyond that point, and you are making 
hourly or 2 hour measurements, if you use the mean of the second 
differences, you can show that all the middle terms cancel, and in 
fact you are looking at the frequency at the beginning of the run and 
the frequency at the end of the run to compute the frequency drift and 
that's very poor. 

DR. BARNES: 

My comment would be: There again the problem is in the model, and not 
in the arithmatic. The models applied here were 3 very simple models, 
very simple, simpler than you will run into in life. It was pure random 
walk plus a drift or pure frequency noise plus a drift, or pure random 
walk of frequency noise plus a drift and it did not approach at all any 
of the noise complex models where you would have both white frequency and 
random walk frequency and a drift. That's got to be handled separately, 
I'm not even totally sure how to perform it in all cases at this point. 

MR. McCASKILL: 

I would like to know if you would comment on the value of the sample time 
and the reason why, of course, is that the mean second difference does 
depend on the sample time? For instance, if you wanted to estimate the 
aging rate or change in linear change of frequency, what value of sample 
time would you use in order to make that correction. So, really, the 
question is, how does the sample time enter into your calculations? 

DR. BARNES: 

At least I will try to answer in part. I don't know in all cases, I'm 
sure, but if you have a complex noise process where you have at short 
term different noise behavior than in long term, it may benefit you to 
take a longer sampling time and effectively not look at the short term, 
and then one of the simple models might apply. I honestly haven't 
looked in great detail at how to choose the sample time. It is an 
interesting question. 
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MR. McCASKILL: 

Well, let me go further, because we had the benefit of being out at 
NBS and talking with Dr. Allan earlier and he suggested that we use 
the mean second difference, and the only problem is if we want to 
calculate or correct for our aging rate at a tau of five days or ten 
days, and you calculate the mean second difference, you come up with 
exactly the Allan Variance. What appears is that in order to come up 
with the number for the aging rate, you have to calculate the mean 
second difference using a sample time whenever you take your differences 
of longer than, let's say, ten days sample time. So we use, of course, 
the regression model, but we use on the order of two or three weeks in 
order to calculate an aging rate correction for, say, something like the 
rubidium in the NAVSTAR 3 clock. It looks like in order to come up 
with a valid value for the Allan Variance of five or ten day sample 
time you have to calculate the aging rate at a longer, maybe two or 
three times longer sample time. 

DR. BARNES: 

Dave Allan, do you think you can answer that? 

MR. ALLAN: 

Not to go into details, but if you assume that in the longer term you 
have random walk frequency modulation as the predominant noise process 
in a clock, which seems to be true for rubidium, cesium and hydrogen, 
you can do a very simple thing. You can take the full data length 
and take the time at the beginning, the time in the middle and the 
time in the end and construct a second difference, and that's your 
drift. 

There is still the issue of the confidence interval on that. If you 
really want to verify your confidence interval, you have to have enough 
data to do a regression. You need enough data to test to be sure the 
model is good. 

DR. WINKLER: 

That argument is fourteen years old, because we have been critized 
here. I still believe that for a practical case where you depend on 
measurements which are contaminated and maybe even contaminated by 
arbitrarily large errors if they are digital. These, theoretical 
advantages that you have outlined may not be as important as the 
benefits which you get when you make a least square regression. In 
this case you can immediately identify the wrong data. Otherwise, if 
you put the data into an algorithm you may not know how much your data 
is contaminated. So for practical applications, the first model even 
though theoretically it is poor, it still gives reasonable estimates 
of the drift and you have residuals which let you identify wrong phase 
values immediately. 
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DR. BARNES: 

I think that’s true and you may have different reasons to do regression 
analysis, if your purpose is to measure a drift and understand the 
confidence intervals, then I think what has been presented is reasonable, 
if you have as your purpose to look- to see if there are indications of 
funny behavior in a curve that has such strong curnature or drift that 
you can’t get it on graph paper without doing that, I think it is a very 
reasonable thing to do. I think looking at the data is one of the 
healthiest things any analyst can do. 
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The accepted definition of frequency stability in the time domain is 
the two-sample variance (or Allan variance). It is based on the 
measurement of average frequencies over adjacent time intervals, 
with no "dead time" between the intervals. The primary advantages 
of the Allan variance are that (1) it is convergent for many 
encountered noise models for which the conventional variance is 
divergent; (2) it can distinguish between many important and 
different spectral noise types; (3) the two-sample approach relates 
to many practical implementations; for example, the rms change of an 
oscillator's frequency from one period to the next; and (4) Allan 
variances can be easily estimated at integer multiples of the sample 
interval. 

In 1974 a table of bias functions which related variance estimates 
with various configurations of number of samples and dead time to 
the Allan variance was published [l]. The tables were based on 
noises with pure power-law spectral densities. 

Often situations occur that unavoidably have dead time between 
measurements, but still the conventional variances are not 
convergent. Some of these applications are outside of the time-and- 
frequency field. Also, the dead times are often distributed 
throughout a given average, and this distributed dead time is not 
treated in the 1974 tables. 

This paper reviews the bias functions B,(N,r,p), and BZ(r,p) and 
introduces a new bias function, B,(2,M,r,p), to handle the commonly 
occurring cases of the effect of distributed dead time on the 
computed variances. Some convenient and easy-to-interpret 
asymptotic limits are reported. A set of tables for the bias 
functions are included at the end of this paper. 

Key words: Allan variance; bias functions; data sampling and dead 
time; dead time between the measurement; definition of frequency 
stability; distributed dead time; two-sample variance 
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1. Introduction 

The sample mean and variance indicate respectively the approximate magnitude 

of a quantity and its uncertainty. For many situations a continuous function 

of time is sampled, or measured, at fairly regular intervals. Sampling is not 

always instantaneous. It takes a finite time and provides an "average 

reading." If the underlying process (or noise) is random and uncorrelated in 

time, then the fluctuations are said to be "white" noise. In this situation, 

the sample mean and variance calculated by the conventional formulas, 

(1) 

provide the needed information. The "bar" over the y in eq (1) above denotes 

the average over a finite time interval. In time and frequency work, y is 

defined as the average fractional (or normalized) frequency deviation from 

nominal over an interval 7 and at some specified measurement time. As in 

science generally, the physical model determines the appropriate mathematical 

model. For the white noise model, the sample mean and variance are the 

mainstays of most analyses. 

Although white noise is a common model for many physical processes, more 

general noise models are being identified and used. In precise time and 

frequency measurement, for example, there are two quantities of great 

interest: instantaneous frequency and phase. These two quantities by 

definition are exactly related by a differential. (We are NOT considering 

Fourier frequencies at this point.) That is, the instantaneous frequency is 

the time rate of change of phase. Thus, if we were employing a model of white 

frequency-modulation (white FM) noise, then the phase noise is the integral of 

the white FM noise, commonly called a Brownian motion or random walk. 

Therefore, depending on whether we are currently interested in phase or 

frequency, the sample mean and variance may or may not be appropriate. 
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By definition, white noise has a power spectral density (PSD) that is constant 

with Fourier frequency, Since random walk noise is the integral of white 

noise, the power spectral density of a random walk varies as l/f2 (where f is 

the Fourier frequency) [2]. We encounter noise models whose power spectral 

densities are various power laws of their Fourier frequencies. Flicker noise 

is very common and is defined as a noise whose power spectral density varies 

as l/f over a relevant spectral range. If an oscillator's instantaneous 

frequency is well modeled by flicker noise, then its phase would be the 

integral of the flicker noise. It would have a PSD which varied as l/f3. 

Noise models whose PSD's are power laws of the Fourier frequency but not 

integer exponents are possible as well but not as common. This paper 

considers power-law PSD's of a quantity y(t); y(t) is a continuous sample 

function which can be measured at regular intervals. For noises whose PSD's 

vary as fa with a < -1 at low frequencies, the conventional sample mean and 

variance given in eq (1) do not converge as N gets large [2, 31. This lack of 

convergence renders the sample mean and variance ineffective and often 

misleading in some situations. 

Although the sample mean and variance have limitations, other time-domain 

statistics can be convergent and quite useful. The quantities that we 

consider in this paper depend significantly on the details of the sampling 

procedures. Indeed, each sampling scheme has its own bias, and this is the 

motivation for the bias functions discussed in this paper. 

2. The Allan Variance 

Recognizing that for particular types of noise, the conventional sample 

variance fails to converge as the number of samples, N, grows, Allan suggested 

that we set N = 2 and average many of these two-sample variances to get a 

convergent and stable measure of the spread of the quantity in question [3]. 

This is what has come to be called the Allan variance. 
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More specifically let us consider a sample function of time as indicated in 

figure 1. A measurement consists of averaging y(t) over the interval 7. The 

next measurement begins at a time T after the beginning of the previous 

measurement interval. There is no logical reason why T must be as large as r 

or larger--if T C r, then the second measurement begins before the first is 

completed, which is unusual but possible. When T = 7, there is no dead time 

between measurements. 

The accepted definition of the Allan variance is the expected value of a two- 

sample variance with no dead time between successive measurements. In 

symbols, the Allan variance is given by 

(2) 

where there is no dead time between the two sample averages for the Allan 

variance and the E[*] denotes the expectation operator. 

3. The Bias Function B,(N,r,p) 

Define N to be the number of sample averages of y(t) used in eq (1) to 

estimate a sample variance (N = 2 for an Allan variance). Also define r to be 

the ratio of T to 7 (r = 1 when there is no dead time between measurements). 

The parameter p is related to the exponent of the power law of the PSD of the 

process y(t). If a is the exponent in the power-law spectrum for y(t), then 

the Allan variance varies as T raised to the p power, where a and /, are 

related as shown in figure 2 12-41. We can use estimates of p to infer a, the 

spectral type. The ambiguity in a for ~1 = -2 has been resolved by using a 

modified a$(~) [5-71. 

Often data cannot be taken without dead time between sample averages, and it 

is useful to consider other than two-sample variances. We will define the 

bias function B,(N,r,p) by the ratio, 

a2(N,T,r) 
B,(N,rA = a2(2 T r) t , , 

(3) 
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where 02(N,T,z) is the expected sample variance given in eq (1) and based on N 

measurements at intervals T and averaged over a time 7 and r = T/T. In words, 

B,(N,r,p) is the ratio of the expected variance for N measurements to the 

expected variance for two samples (everything else held constant). The 

variances on the right in eq (3) depend implicitly on the noise type even 

though p or a are not shown as independent variables. The noise-type 

parameter, cc, is shown as an independent variable for all of the bias 

functions in this paper, because the values of the ratio of these variances 

explicitly depend on p as will be derived later in the paper. Allan showed 

that if N and r are held constant, then the a, p relationship shown in figure 

2 is the same; that is, we can still infer the spectral type from the 7 

dependence using the equation a = -p-l, -2 5 p < 2 [3]. 

4. The Bias Function B2(r,p) 

The bias function B2(r,p) is defined in [l] by the relation, 

a2(2,T,7) 
B,(w) = (r2(2 7 T) = 

o2 (2,T,7) 
, , cJ;w * (4) 

In words, B,(r,p) is the ratio of the expected two-sample variance with dead 

time to that without dead time (with N = 2 and 7 the same for both variances). 

A plot of the B,(r,p) function is shown in figure 3. The bias functions B, 

and B, represent biases relative to N = 2 rather than infinity; that is, the 

ratio of the N sample variance (with or without dead time) to the Allan 

variance and the ratio of the two-sample dead-time variance to the Allan 

variance respectively. 

5. The Bias Function B,(N,M,r,p) 

Consider the case where a great many measurements are available with dead time 

between each pair of measurements (T, > rO). The measurements are averaged 

over the time interval 7,, the spacing between the beginning of one 

measurement to the next is T,, and it may not be convenient to retake the 

data. We might want to estimate the Allan variance at, say, multiples M of 
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the averaging time 7,. If we average groups of the measurements of y(t), then 

the dead times between the original measurements are distributed periodically 

throughout the new average measurements (see figure 4). Define 

= l M+i-1 
Yi = M c ill9 

n=i 
(5) 

where yi are the raw or original measurements based on dead time TO-70. 

Also define the two-sample variance with distributed dead time as 

a2(2,M,T,r) = %E[(&?i+~)21, (6) 

with 7 = M70 and T = MT,. 

We can now define B, as the ratio of the N-sample variance with distributed 

dead time to the N-sample variance with dead time accumulated at the end as in 

figure 1: 

B, W,M,r,Cc) = a2 (N,M,T,7) 
o2 (N,T,r) ’ (7) 

Although B,(N,M,r,p) is defined for general N, the tables in the Appendix 

confine treatment to the case where N = 2. There is little value in extending 

the tables to include general N. Though the variances on the right in eq (7) 

depend explicitly on N, T and 7, the ratio B,(N,M,r,p) depends on the ratio 

r = T/r, and on p as developed later in this paper. 

In words, B,(2,M,r,p) is the ratio of the expected two-sample variance with 

periodically distributed dead time, as shown in figure 4, to the expected two- 

sample variance with all the dead time grouped together as shown in figure 1. 

Both the numerator and the denominator have the same total averaging time and 

dead time, but they are apportioned differently. The product B2(r,p) l 

B,(2,M,r,p) is the distributed dead-time variance over the Allan variance for 

a particular T, 7, M and p. 
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Some useful asymptotic forms of B, can be found. In the case of large M and 

M > r, we may write that 

B3 = l+r 
3 ' ls/bs2, 

B3 = 
4 h(2) 

2 In(r)+3' = cc 0. 

(8) 

One simple and important conclusion from these two equations is that for the 

cases of flicker FM noise and random-walk FM noise, the vfi dependence for 

large r is the same whether or not there is periodically distributed dead 

time. The values of the variances differ only by a constant, and in the 

latter case the constant is 1. This conclusion is also true for white FM 

noise, and in this case the constant is also 1. 

In the cases r >> 1 and -2 s p s -1, we may write for the asymptotic behavior 

of B, 

B, =ff, a = -r-l , (9) 

as was determined empirically. In this region of power-law spectrum the B, 

function has an ff dependence for an P spectrum. 

6. The Bias F'unctions 

The bias functions can be written fairly simply by first defining the 

function, 

F(A) = 2A4’+= - (A + I)'+= - ((A - l)l'+=. (10) 

The bias functions become 

N-l N-n 
l+C . F(nr) 

B, W,r,Cc) = 
n=l N(N-1) 

1 + Ir F(r) , (11) 
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1 + %F(r) 
B2(rsP) = 2(1-p) 9 (12) 

as given in [l], and 

M-l 
2M + M*F(Mr) - 1 (M-n)[2F(nr)-F((M+n)r) -F((M-n)r)] 

B, (2,M,r,pL) = 
n=l 

W+2>[F(r) + 21 , (13) 

as indicated in the appendix. 

For p = 0, eqs (111, (12), and (13) are the indeterminate form O/O and must be 

evaluated by l'H8pital's rule. Special attention must also be given when 

expressions of the form O" arise. We verified a random sampling of the table 

entries using noise simulation and Monte Carlo techniques. No errors were 

detected. The results in this paper differ some from those in [8], which 

suggests that there may be some mistakes. Tables for the three bias functions 

are listed at the end of the paper (note that the computer print-out did not 

have a symbol for Greek mu = p). 

7. Examples of the Use of the Bias Functions 

The spectral type, that is, the value of p, may be inferred by varying 7, the 

sample time. However, another useful way of determining the value of p is by 

using B,(N,r,p) as follows: calculate an estimate of a$(N,T,r) and $(2,T,7) 

and hence B,(N,r,p); then use the tables to infer the value of p. 

Suppose one has an experimental value for aG(N1, T,, TV) and its spectral 

type is known, that is, /J is known. Suppose also that one wishes to know the 

variance at some other set of measurement parameters, N,, T,, 72. An unbiased 

estimate of $(N2,T2, r2) may be calculated by the equation: 

B, W, ,r7 ,P% (r, ,P> 
B, (N, ,rl ,dB, (rl ,cc> 1 $W, ,T, ,~1) (14) 

where rl = T1/~l and r2 = T2/r2. 
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Since the time-domain definition for frequency stability is the Allan 

variance, it behooves us, where possible, to relate other variances to the 

Allan variance. If we have an N-sample variance on data with dead-time T-7 

and we know the power-law spectral type (the value of p), then we may write 

2 
uY (7) = d (N,T,7) 

B, W,r,C.r) B2(r,p) (15) 

If we have an N-sample variance where each data entry is an average of M 

samples with distributed dead time, then we may write 

037) = 0% W,M,T,7) 
B, (N,r,pL) B2 (r,p) B, (N,M,r,pL). 

8. Conclusion 

(16) 

For some important power-law spectral density models often used in 

characterizing precision oscillators (S,(f) - fQ, a = -2, -1, 0, +l, +2), we 

have studied the effects on variances when there is dead time between the 

frequency samples, and the frequency samples are averaged to increase the 

integration time. Since dead time between measurements is a common problem 

throughout metrology, the analysis here has broader applicability than just to 

time and frequency. Specifically, this kind of analysis has been used with 

gage blocks and standard volt cells--showing that the classical variance may 

be non-convergent in some cases [9]. 

Heretofore, the Allan variance has been shown to have some convenient 

theoretical properties in relation to power-law spectra as the integration or 

sample time is varied (if ay2(7) - 7p, then a = -p -1, -2 < ~1 5 2). Since 

oy (7)) by definition, is estimated from data with no dead time, the sample or 

integration time can be unambiguously changed to investigate the 7 dependence. 

From our analysis, we have concluded that for the asymptotic limit of several 

samples being averaged with dead time present in the data, the 7 dependence of 

the variances is the same. The a = -p -1 relationship still remains valid for 

white FM noise (/J = -1, a = 0), flicker FM noise (/,L = 0, a = -l), and for 
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random-walk FM noise (p = +l, a = -2). The asymptotic limit is approached as 

the product of number of samples averaged and the initial data sample time, 

T,,, becomes larger than the dead time (M > r). The variances so obtained 

differ only by a constant, which can be calculated as given in this paper. 

A knowledge of the appropriate power-law spectral model is required to 

translate a distributed dead-time variance to the corresponding value of the 

Allan variance. In principle, the power-law spectral model can be estimated 

from the rfi dependence, using the variance analysis on the data as outlined 

above. 
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Table 1. Table of some bias function identities 

B, (2,r,p) 

B, (N,r,2) 

B,(N,l,l) 

B,(N,~,P) 

B,(N,~,P) 

B, (N,r, -1) 

B, W,r, -2) 

B, (0,~) 

B,(~,P) 

B2 (r,2) 

B2 (r,l) 

B,(r,-1) 

B,(r,-2) 

B, (2,M,l,~) 

B, (2,M,r,-2) 

B, (2,r,p) 

B, (2,M,r,2) 

B, (2,M,r,-l) 

= 1 

= (N(N+1))/6 

= N/2 

= (N(l-Np))/[(2(N-l)(l-2")1 for pz0 

= N ln(N)/[2(N-1) ln(2)] for p=O 

= 1 for p < 0 

N-l 
= [2/(N(N-l)] 1 (N-n) . nfi for p > 0 

n=l 

=lifrll 

=lifrzlorO 

= 0 

= 1 
=r 2 

= (3r - 1)/2 if r 1 1 

=rifOlrll 

=lifrll 

= 0 if r=O 

= 1 if r=l 

= 2/3 otherwise 

= 1 

=M 

= 1 

= 1 

= 1 for r 1 1 
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I I 
I 

I I I 
I 

M-=lve ment ,., \rUJ” I I Measur ement ; 
t Interval t+r tiT Interval t+i+r 

TWO MEASUREMENTS OF A SET WITH DEAD TIME 

Figure 1. Illustration of two fractional frequency samples with dead time, T-r, between the samples. 
This is two of a set of adjakent frequency measurements, each averaged over an interval 2, needed 
to calculate a two-sample variance from a data set. 



Oy2(T) - TP 3* 

T Sy(9mfu 

White PM h, A *t 

Flicker PM 

White FM 

Flicker FM 

Figure 2. A plot of the relationship between the frequency-domain power-law 
spectral-density exponent a and the time-domain two-sample Allan variance 
exponent p (a = -p-l, -2 I p C 2 and a 2 1 for p = -2). Also shown is the 
similar relationship between a and the modified Allan variance with exponent 
onr ofp' (a= -p'-1, -4Sr'<2). The pointing arrows indicate the mu- 
alpha relationship (a vs. p or r') for which the particular variance applies. 
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2’ 

THE BIAS FUNCTION, B2 (r+) 

Figure 3. A three dimensional plot of the bias function BZ(r,p), where 
r = T/r, and the dead time is T - 7. The "fin" at r = 1 and p = -2 approaches 
zero width as the measurement bandwidth approaches infinity (see appendix ref. 
[31). 
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Illustrations with M = 4 
Distributed Dead Time = 4 * &-Q) 

-TWO AVERAGES WITH FOUR MEASUREMENTS 
EACH FROM A SET WITH DEAD TIME 

Figure 4. An illustration of determining two averages, each taken over four measurements. In this 
illustration the original data have a sample time rO and a dead time T, - rO. The two averages each have a 
distributed sample time 4r, = r, and a distributed dead time 4(T, - r,,) = T - r, since in this case M = 4. 
These two averages are two of a set similar averages with distributed sample times and dead times needed to 
calculate a two-sample distributed sample-time and dead-time variance -- the numerator for the bias function 

B3 * The denominator for B, is a two-sample variance with no distributed sample time or dead time but with T = 
MT,, and T = Mr, and dead time T - r. 



Appendix 

With reference to figure 1, the frequency sampling window has an equivalent 

phase sampling window. The intent is to evaluate the variance, S(M), of the 

sampled phase function in terms of the phase autocorrelation function, R(r). 

The process here is to correctly account for terms and cross-terms coming from 

squaring and averaging the samples for each M. The B,(2,M,r,p) function can 

then be obtained from the relation, 

B, (2,M,r,pL) = S 00 

s(l)~M~+~ ' 

for appropriate M, r, and /.L. The denominator is just the two-sample variance 

with dead time for MT and MT (in accordance with the definition of 

B, (2,M,r,p)). The factors common to the numerator and denominator are ignored 

in the following. 

For M = 1, the variance S(1) is just 

S(1) = 4-R(O) - 4-R(z) - 4-R(T) + 2*R(T+r) + 2R(T-T), 

where use has been made of the definition of the autocorrelation function, 

R(T) = E[4(t) * #(t+T)l. 

It is convenient to define a function G(T) as 

G(T) = 2.R(T) - R(T+r) - R(T-7). 

Similarly, S(2) can now be written in the form, 

S(2) = 8*R(O) - 8-R(7) + 2-G(T) - 4.G(2T) - 2*G(3T). 

Following this procedure, we can verify that the general S(M) is just 
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S(M) = 4*M.R(0) - 4-M-R(r) - 2.M.G(MT) 

M-l 
+ 2 1 (M-n)[2*G(nT) - G((M+n)T) - G((M-n)T)]. 

n=l 

Following the work of Barnes and Allan [2,3], we can define the function U(r) 

by the relation, 

U(T) = 2.R(O) - 2-R(7), 

and also define 

F(nr) = G(Wfl(7), 

where r = T/r. The function U(7) for power-law power spectral densities has 

the form, 

which yields 

171 lr+2 

U(7) = 
4-21+2' 

F(nr) = 2.(nr)P+2 - (nr+l)P+2 -lnr-lI'+'. 

Finally, the working relation can be written as 

M-l 

B, (2,M,r,pL) = 

2.M + M+F(Mr) n-l(M-n) [2*F(nr) - F((M+n)r) - F((M-n)r)] 

. 
[2 + F(r)] . Mp+' 
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Bl(N,r,d far r = .Ol 

kl\N= 4 

-2 : l.oooEQO 
-1.8 : 1.091EQO 
-1.6 : 1.199E+M 
-1.4 : 1*328E*oo 
-1.2 : 1.482EQO 
-1 : 1.667EQO 
-.a : Lw4EQo 
-.b : 2. KuE+c@ 
-.4 : 2.407EQo 
-.2 : 2.677EQO 
0 : 2.912EQO 
.2 :’ 3.085EQa 
.I : 3.202QO 
.b : 3.2beEQO 
.e : 3.3OmOo 
1 : 3.319EQO 
1.2 : 3.327EMO 
1.4 : 3.3NEQo 
1.6 : 3.332fm 
1.8 : 3.333EQO 
2 : 3.333EQO 

Mu\ N= 
---em---- 
-2 : 

-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.a : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.b : 
.a : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

4 

8 lb 32 64 128 256 512 1024 IY 
~*-~~~-~~~~~ --~~~-~~-~~ ------------ ---_-____--___-_-___---- --_-_---___--______------. _--~-~~~~~~-~~~~~~ 

l.OOOEQO l.OOOEQO 1.OOOEQO l.woEQa l.oooEQo 1.OOOE+ca l.OOOEQo l.OcaQO l.OOoEQo 
1.21OEm 1.3bMQO 1.545EQO l.mEQo 2.089EQO 2.349EQO 2.45bEQO 2.49490 2.512000 
1.487EQO 1.893EQO 2.455EQO 3.239EQO 4.44cE90 5.505EQO 6.002EQo 6.19moO 6.309EQo 
1.8WQO 2.6eeEQO 3.991EQO b.caEQO 9.SomoO 1.282EQl 1.456EQl 1.532EQl 1.58SEQl 
2.346EQo 3.eeOEQO 6.598EQO 1.14SEQl 2.02bEQl 2.947EQl 3.48bEQl 3.7S4EQl 3.9ewo1 
3.OOOEQO 5.bb7EQO l.lOOEQl 2.167EQl 4.255EQl b.b28EQl 8.19CCQl 9.Ob4EQl l.OOOEQ2 
3.eboEQO 8.303EQo 1.828EQl 4.041EQl 8.69lEQl LUJQ2 1.8bEEQ2 2.137EQ2 2.519EQ2 
4.959EQO 1.205EQl 2.977EQl 7.29bEQl 1.697EQ2 2.W5EQ2 4.076EQ2 4.851EQ2 6.423EQ2 
6.279EQO 1.703EQl 4.b55EQl 1.247EQ2 3.106EQ2 5.814EQ2 8.357EQ2 1.043EQ3 1.71SEQ3 
7.714EQo 2.29MQl 6.83bEQl l.WtEQ2 5.ZOEQ2 1.036EQ3 1.58OEQ3 2.084EQ3 5.581EQ3 
9.075EQO 2.909EQl 9.28ZQl 2.857EQ2 7.951E92 1.672EQ3 2.719EQ3 3.826003 
I.OlBEQl 3.448EQl 1.162EQ2 3.7b3EQ2 1.097EQ3 2.446EQ3 4.26XQ3 6.453EQ3 
1.09SEQl 3. WE*01 1.354EQ2 4.572EQ2 1.3WQ3 3.28?EQ3 6.172EQ3 1.014EQ4 
1.143EQl 4.133EQl 1.495EQ2 5.221EQ2 l.b49EQ3 4.142EQ3 8.419EQ3 1.514EQ4 
1.17oEQl 4.303EQl 1.59OEQ2 5.708EQ2 1.86X93 4.991E93 1.104EQ4 2.189EQ4 
l.mEQl 4.403EQl l.b53EQ2 b.Ob6EQ2 2.055EQ3 5.842EQ3 1.412EQ4 3.109EQ4 
1.19iEQl 4.4blE+Ol 1.693EQ2 6.33NQ2 2.21SEQ3 6.717EQ3 1.782EQ4 4.3aQ4 
1.19bEQl 4.494EQl 1.72OEQ2 6. S3OEQ2 2.359EQ3 7.b4OEQ3 2.234EQ4 6.169EQ4 
1.198EQl 4.514EQl 1.7X42 6. @DO2 2.49x+03 8. b37EQ3 2.79X44 8. b97EQ4 
1.199EQl 4.52bEQl 1.75OEQ2 6.819EQ2 2.623EQ3 9.737E43 3.49XQ4 1.231E+OS 
1.2CGEQl 4.53X+01 1 IxOEQ2 6.933E+O2 2.752EQ3 1.097EQ4 4.37EEQ4 1,749E+O5 

Bl(N,r,u) for r = .03 

8 lb 

l.WlEQO 1.oooE+oo l.OMEQO 
1.091EQO 1.211EQO l.WQO 
1.199EQO 1,49lE+OO 1.91OEQo 
1.329EQO 1.8b3EQO 2.719EQQ 
1.484EQO 2.355EQO 3.91eEQo 
l.M7E+ca 3.wOEQO 5. bb7EQo 
1*878E+ca 3.825EQo 8.141EQO 
2.114EQO 4.838EQO 1.147EQl 
2.362EQo b.OOSEQO 1.5bbEQl 
2.604EQO 7.242EQO 2.047EQl 
2.8i9000 8.434woG 2.54tEQl 
2.592EQo 9.4bcawo 3.013E+ol 
3.11@i+Oo 1.027EQl 3.412EQl 
3.2OxQO 1.087EQl 3.728EQl 
3.257EQO 1.128EQl 3*9bbE+o1 
3.29OE+M l.lSZQl 4.141EQl 
3.309E+oo 1 I 172EQl 4.267E+Ol 
3.32oEQo 1.184EQl 4.3bOEQl 
3.327EM 1.191EQl 4.431EQl 
3.331EQO 1.19bEQl 4.487EQl 
3.33xQO 1.2OOEQl 4.533EQl 

32 
.--a-mm--___- 

1.cooE+c4 
l.s72Qo 
2.532EQO 
4.133EQo 
6.7beEQO 
l.lOOEQl 
1.753EQl 
2.706EQl 
3.99mOl 
5.581EQl 
7.348E+Ol 
9.127EQl 
1.077EQ2 
1.22OEQ2 
1.339EQ2 
1.437EQ2 
1.518EQ2 
l.WEQ2 
l.b5UEQ2 
1.7ObEQ2 
1.7bOEQ2 

64 128 256 512 

1.OOOE+OO 1.OooE+oO l.OOOEQO l.MJOEQO 
1.827EQO 1.95oEQo 1.99XQO 2.01oEQO 
3.341EQO 3.782EQO 3.9b3EQO 4.o3OEQo 
b.caOEQO 7.266QO 7.815EQO 8.044EQo 
1.093301 1.37mol 1.525EQl 1.595EQl 
1.928EQl 2.5bOEQl 2.929EQl 3.127EQl 
3.XMQl 4.62&01 5*499E+Ol b.O29E+Ol 
5.441EQl 8.049EQl 9.997EQl 1.134EQ2 
8.524EQl 1.335EQ2 1.744iQ2 2.WQ2 
1.259EQ2 2.094EQ2 2.897EQ2 3.619EQ2 
1.748EQ2 3.09bEQ2 4.5bPEQ2 6.082EQ2 
2.28GQ2 4.324EQ2 6.85bEQ2 9.834EQ2 
2.835EQ2 5.7soEQ2 9.8MEQ2 1.541EQ3 
3.372EQ2 7.357EQ2 1.376693 2.3MEQ3 
3. WEQ2 9.152EQ2 1.87X+03 3.5eoEQ3 
4.382EQ2 1.117EQ3 2.533EQ3 5.395EQ3 
4.857EQ2 1.34@+03 3.392EQ3 8.128EQ3 
5.352EQ2 1.615EQ3 4.535EQ3 1.22W-04 
5.85lEQ2 1.5’3OEQ3 6. WQ3 l.ebbEQ4 
6.374EQ2 2.304EQ3 8.142EQ3 2.849EQ4 
6. p33EQ2 2.752EQ3 1.097EQ4 4.37eEQ4 

1024 
.-----m-----m 

l.OOWOO 
2.013x@ 
4.053EQO 
8.13moo 
1.62bEQl 
3.229EQl 
6.341EQl 
1.22sQ2 
2.314EQ2 
4.2%EQ2 
7.bllEQ2 
1.3aE93 
2.277EQ3 
3. WQ3 
b.SS4EQ3 
1.114EQ4 
1.903EQ4 
3.27tiQ4 
5.be4EQ4 
9.93wo4 
1.745wS 

Iff 
.--a--- 

l.OOOE+OO 
2. OlbEQO 
4.Ob4E+W 
8.191EQO 
l.b51E+Ol 
3.333EQl 
6.77OE+Ol 
1.40x+02 
3.099EQ2 
8.S71E+O2 
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Bl(N,r,u) for P = .l 

b\ N= 4 8 16 32 64 128 256 512 
----m--mm --____-___-_-_------____________________------------------------------- -~~~~--~~~~~ ------------- 

-2 : l.OOOE+OO 1.OOmOO l.oOOE+OO l.OOOE+oO 1.oOmOO 1.OOOE+oO 1.OOCWO l.OOOE+OO 
-1.8 : 1.093E+00 1.226Em 1.43eE+oo 1.547E+oO 1.579E+OO 1.586E+ca 1.586E+OO l.B5E+oo 
-1.6 : l.MsE+OO 1.522E+OO 2.021000 2.32X*00 2.449WO 2,49OE+OO 2.502E+OO 2.505E+OO 
-1.4 : 1.337Em 1.907E+OO 2.832E+oO 3.477E+OO 3.772Em 3.892E+OO 3.9x+00 3.%4E+OO 
-1.2 : 1.491E+OO 2.39bE+OO 3.5'3lEMH 5.125E+oo 5.751EW b.O4bE+OO 6.177E+OO 6.235EMO 
-1 : l.667E+OO 3.WWOO 5.375E+OO 7.429E*oo 8.653E+OO 9.312E400 9.652E+OO 9.82%00 
-.e : 1.66OE+OO 3.720000 7.204EMO l.OSE+Ol l.PiE+Ol 1.419DOl 1.502E*ol 1.55mOl 
-.b : 2.065E+OO 4.54OBOO 9.423E+OO 1.4bfE+Ol i.WE+Ol 2.137EM 2.32mOl 2.452E+Ol 
-.4 : 2.27X40 5.43OE+OO 1.199E+Ol 1.971E+Ol 2.642E+Ol 3.177E+Ol 3.592E91 3.91oE+Ol 
-.2 : 2.472E+OO b.34WOO 1.481E+Ol 2.58X+01 3.6X+01 4.6b4E+Ol 5.542Em 6.314E+Ol 
0 : 2.65X+00 7.236000 1.779E+Ol 3,3OOE+ol 5.003E+Ol 6,77lE+Ol 8.566001 l.O37E+O2 
.2 : 2.81OEm 8.065E+OO 2.08OE+ol 4.lllE+Ol 6.69OE+Ol 9.75&?+01 l.?31E+O2 1,741E+O2 
.I : 2.94OE+OO 8.804E+OO 2.376E+Ol 5.OlWOl 8.816EW 1,397E+O2 2.084EM2 2.993E+O2 
.b : 3.043E+OO 9.445E+OO 2.b63E91 6.01++01 1.149002 1.9!SE+O2 3.295E+O2 5.2b5E+o2 
.8 : 3.123E+OO 9.989E+OO 2.938E+Oo1 7.118E91 1.487E402 2.86X+02 5.26X+02 9.46WO2 
1 : 3.184E+OO l.O45E+Ol 3.204EW 8.347EKI 1.918E+O2 4.114E+O2 8.52X+02 1.735003 
1.2 : 3.2X%+00 l.WE+Ol 3.4bX+Ol 9.728E+Ol 2.47W.02 5.94#+02 1.394E+O3 3.232eO3 
1.4 : 3.265E+OO l.lME+Ol 3.721E+Ol 1.13OE+O2 3,183E+o2 8.636002 2.304E+O3 6.103E+O3 
1.6 : 3.2'%E+W l.l47E+Ol 3.982E+Ol 1.309E+O? 4.113E+O2 1.263E+O3 3.843643 1.16&904 
1.8 : 3.315EKN 1.174691 4.252Eto1 1.517EW2 5.33OE+O2 1.858E+O3 6.467E+O3 2*25OE+O4 
2 : 3.3x+00 1.2OOE+01 4.533+01 1.7bOE+O2 6.933+02 2.752003 1.097E+04 4.378E+o4 

hJ\ N= 4 a 16 32 64 128 256 512 1024 INF 
-mm--_-m-. .__C---___--. ---m--mm-m-- mmmw--mm---* -e-m-e----m- -----m----mm. .--mm-e-m-- ~~~--~~~---~~ m----------- mm--------m-m----- 

-2 : 1.OOOE+00 1.ooOE+OO 1.C0OE+OO 1.oooE+oo 1.oooE+oo 1.cooE*w 1.OOOE+W l.OOK+OO 1.owE+oo 1.OOOE+w 
-1.8 : 1.124EW l,226E+OO 1*259E+oo 1.265EMO 1.26wOO 1.26xm 1.262E+OO 1.2blE+OO l.ZblE+C@ 1.26OE+OO 
-1.6 : 1.254E+OO 1.479E+Oo 1,5b4E+O0 1.589WO l.594E*OO 1.594E+w 1.59mOO 1.591E+W 1,5?1E+OO 1.59oE+00 
-1.4 : 1.38&00 1.759E+OO 1.925E+OO 1.988E+OO 2.009E+OO 2.014E+OO 2.015E+OO 2.015Em 2.014E+OO ?.013E+W 
-1.2 : 1*527E+OO 2.Ob8E+OO 2.351E+OO 2.479E+OO 2.534E90 2.556wJO 2.565Em 2.569EW 2.57OEKG 2.571EtOO 
-1 : 1. bb?E+tW 2.4OWOO 2.85oE+oo 3.087Em 3.209E+OO 3.271E+OO 3.302E+OO 3.318E+OO 3.326E+OO 3.333E+O'J 
-.a : 1.806E+MJ 2.769E+OO 3.435E+oO 3.847E+CG 4.093E+w 4.2zmOO 4.325E+OO 4.376000 4.405E+OO 4.U7E+OO 
-.b : 1*94x+00 3.16mOO 4.122Em 4.804Em 5.275E+OO 5.595000 5.812EMO 5.958E+OO 6.056E+i@ ~.252E+OO 
-.4 : 2.076Em 3.577E+OO 4.927E+OO 6.024EMO 6.889E*OO 7.564E+OO 8.086E+C@ 8.487E+OO 8.795E+OO 9.776hOO 
-.2 : 2.2omOO 4.021E+OO 5,877E+00 7.597Em 9.147E+OO l.O53E+O1 1.175Ew 1*282E+Ol 1.3TIE+O1 2.017E+Ol 
0 : 2.32WOO 4.49mOO 7*OOOE+OO 9.b51E+OO 1.238001 1.515E+Ol 1.796E+Ol 2.079E+Ql 2.363Em 
.2 : 2*44oE+Oo 4*994E*OO 8.338E+OU 1.23bE+Ol 1.71oE+Ol 2*26oE+Ol 2.697E+Ol 3.632E+Ol 4.47x+01 
.4 : 2.55oE+oo 5.53OE+OO 9.94OE+oO 1.599E+Ol 2.411E+Ol 3,493E+O1 4.926001 6.823E+Ol 9.33wOl 
.b : 2.654E+OO 6.106EMO 1.187E91 2.089E+ol 3.472Em 5.591E@l 8.786E+Ol 1,365E+O2 2.103002 
.8 : 2.754E+OO 6.729E+OO 1.422E+Ol 2.756E+Ol 5.09mOl 9.187E41 1.63X+02 2.87%+02 5.037E+O2 
1 : 2.852E+OO 7.4Ot.wO 1.7oeE+Ol 3.67X41 7.618691 1.552E+O2 3.132E+O2 6,292E+O2 1.261E+O3 
1.2 : 2.947E+OO 8.147E+OO 2.059E+Ol 4.942E+Ol l.l57E+O2 2.670E+Q2 6.17OE+O2 1.419E93 3.2blE+O3 
1.4 : 3.042E+cQ 8.96%00 2.493EW 6.709E+Ol 1.781E+O2 4.7OJ+O2 1.241E+O3 3.272E+O3 8.631E+O3 
1.6 : 3.137E+OO 9.8bmQO 3.03OE41 9. ME+01 2.774EE42 8.381E+02 2*535E+O3 7.67X93 2.324E+O4 
1.8 : 3.234E+OO l.O87E+Ol 3.699E+Ol 1,267E+O2 4.366E+O2 1.511E+O3 5.245tW3 1.82X+04 6.343E+O4 
2 : 3..3%+60 1*2OOE+Ol 4.53x+01 1.76OE+o2 6.5?3E+O? 2.752E+O3 1.097E+04 4.378EtO4 1,749E+O5 

Bl(N,r,u) for r = .3 

1024 INF 
~-----~~--~-~~---- 

l.oooE90 1.oooEm 
1.564E+OO 1.5emOO 
2.505mO 2.504E+oO 
3.96OE+OO 3.962E+OO 
6.26WOO 6.276+00 
9.912E+OO l.OwE+Ol 
1.577E91 1.616E41 
2.537EW 2.702EW 
4.153E+Ol 4*922E+Ol 
6.989E+Ol 1.156902 
1*219E+O2 
2.214E+O2 
4.194EtO2 
8.254E+02 
1.67693 
3*5OOE+cJ3 
7.45x+03 
1.613EtO4 
3.5xwO4 
7*83OE+O4 
1*749E+O5 

20 
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Bl(N,r,d for r = 1 

ICI\ N= 
--------- 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 

-.8 : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.b : 
.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

b\ N= 4 8 lb 
-__--___- _--__--_-___ --__________ -------me--- 

-2 : l.OOOE+OO l.OOOE+OO l.OOOE+OO 
-1.8 : 9.1566~01 8.b82E-01 8.425E-01 
-1.6 : 9.098E-01 8.5bbE-01 8.2b4E-01 
-1.4 : 9.28&E-01 8.84%~01 8.573E-01 
-1.2 : 9.59YE-01 9.33lE-01 9.lbOE-01 
-1 : 1.OOOE+00 l.OOWOO l.OOOE+oo 
-.6 : l.WE+OO l.Oe5E+Oo l.lnE+ca 
-.b : l.l04E+OO l.l93E+Oo 1.265E+OO 
-.4 : l.lME+oo 1.327E+W l.W+OO 
-.2 : 1.243Em 1.49mOo 1.742m 
0 : 1.329E+OO 1.7ObE+OO 2*12OE+OO 
.? : 1.428E+Oo l,972E+OO 2.b42fMo 
.4 : 1.54lEW 2.309E+OO 3.37lE+OO 
.b : 1.672EMo 2.738690 4.4OOE+OO 
.8 : 1.822E+OO 3.28mOO 5.8b4E+ca 
1 : 1*995E+OO 3.98mOo 7.9bbEm 
1.2 : 2.194E+OO 4.885E+Oo l.lOOE+Ol 
1.4 : 2.422E+QO b.O45E+OO l.wE+ol 
1.6 : 2.b8wOo 7*542E+Oo 2.187E+Ol 
1.8 : 2.98bEMo 9.482Em 3.13si91 
2 : 3. ~~*o(J 1.2OOE+Ol 4.533E+Ol 

4 
m----me---m 

8.333E-01 
8.58lE-01 
8. WE-01 
9.19x-01 
9*5b9E-01 
l.oooEMO 
1.05OE+oO 
l.l07E+OO 
1.172E90 
1.247Em 
1.?33E+l-Q 
1.43mOO 
1.54wOO 
l.b77E+OO 
1.827E+OO 
2.OOtmOO 
2.198E+OO 
?.42bE+OO 
2. bmE+w 
2.988E+O@ 
3.333E+oo 

8 16 32 64 129 
me--em-------. --mm---em-m -*w--m-m-m-- - - m m - - - - - - - - - .  .------we-- 

7.5OOE-01 7.08x-01 6.875E-01 6.77lE-01 6.71%01 
7.827E-01 7.43lE-01 7.22bE-01 7.122E-01 7.Obe01 
8.22lE-01 7.864E-01 7. b72E-01 7.57OE-01 7.517E-01 
8.7OW01 8.41&01 8.245E-01 8. ME-01 8.10%-01 
9. m-01 9.10s-01 8.997E-01 8.9336-01 8.897E-01 
l.OOOE+OO l.Oca+OO l.OOK+W l.OOOE+OO l.WOE+OO 
l.Oe6wJO l.l17E+OO 1.137E+OO 1.15OE+oo l.lbOE+OO 
l.l97E+oO 1.27lE+OO 1.327E+O0 1.37OE+OO 1.4OlE+OO 
1.333E+OO 1.47bE+oO l.%YE+iN 1.7ooE+OO 1.782@00 
1.502E+OO 1.754E+OO l.W4E+OO 2*2lbE+OO 2.418EK~O 
1.714E+OO 2.133E+w 2.581E40 3.048E+OO 3.528E+OO 
1.982E+OO 2.658&00 3.47lE+C@ 4.432Ew 5.555E+OO 
2.32oE+oo 3.39lEtOO 4.84mOO 6.8OlE+OO 9.407E+OO 
2.7soE+w 4.424E+OO 7.Oo6E+oo 1.096001 1.698001 
3.299E+OO 5.894E+oo l.O45E+Ol 1.84lE+Ol 3.23mOl 
4.OOOE+oo 8.OOOEtW l.tmwl 3.2OOE+Ol 6.4OOEW 
4.9OOE+oO l.l04E+Ol 2.5OmOl 5.717E+Ol l.X&M2 
b.O59E+OQ 1.54WOl 3.999E+ol l.O44E+o2 2.7BE92 
7.555E+OO 2.19lE+Ol 6.479E+Ol 1*938E+O2 5*833E+O2 
9.49OEm 3.138E+Ol l.Ob3E+O2 3.b4&+02 1.2KWO3 
1.2OOE+01 4.533E+Ol 1,7bOE+o2 6.933002 2,752E+O3 

BliN,r,mu) for r = 1.01 

32 64 128 

256 512 1024 INF 
-a-wamemm---m. .----m-w----. .~~~--~~~~~-~--~~- 

b.b93E-01 b.WE-01 6.67X-01 6. bb7E-01 
7.042E-01 7.028E-01 7.021E-01 7.014E-01 
7.49OE-01 7.476E-01 7.4&8E-01 7.4blE-01 
8.079E-01 8.ObS01 8.05&Z-01 8.05lE-01 
8.877E-01 8. M-01 8.8bOE-01 8.854E-01 
l.OOOE+OO l.OOOE+OO l.OOOE+OO l.OOOE+c@ 
l.lb5E90 1.165fHO l.l71E+OO l.l75E+OO 
1.422EuIo 1.43mOO 1.44aEao 1.47OE+oo 
1.847E+oo 1.8m3oo 1.938E+oo 2.obwOO 
2.59WOO 2.759E+OO 2.9OOE*oo 3.8b3E+OO 
4.01&00 4.509Ea 5.OOmOO 
b.SSWCQ 8.3bX+OO l.OlmOl 
1.287E91 1.744001 2.35OEm 
2.614E+Ol 4.005E+Ol 6.114EN’l 
5.b5mOl 9.872E+Ol 1.722EZ 
1.28OE*o2 2.5bOE+u2 5.12OE+o2 
2.99%+02 6.88lE+O2 l.%OE+O3 
7.202EtO2 1.897E+O3 5*003E+o3 
1.762W3 5.33lE+O3 1.615004 
4.372E43 1.519E+O4 5.28M+O4 
l.O97E+O4 4.378E+O4 1*749E+O5 

l.OOOE+OO 1.OOOE+Oo l.oooE+OO 
8.28SE-01 8.217E-01 8.181E-01 
8.098E-01 8.009E-01 7*9b3E-01 
8.41X-01 8.333E-01 8.287E-01 
9*05bE-01 8.995E-01 8.9&OE-01 
l.OOOE+OO l.mOE+oo l.OOoE+oO 
l.l33E+OO 1*147E+OO l.l5SE+M 
1.32lE+OO 1.3b2E+Oo 1.3%eGu 
1.589E+OO l.b89E+OO 1.77OE+Oo 
1.98OE+M 2.2ONm 2.4cQE+oo 
2.5bwOO 3.02%00 3.5coE+OO 
3.447E+OO 4.4OOE+OO 5.512E+OO 
4.814+00 b.ME+OO 9.34OEm 
6.9bXMO l.O89E+Ol l.b87E+Ol 
l.O39E+Ol 1*83OE+Ol 3.212E+Ol 
1.593Ew 3*185E+ol 6.3b9E+Ol 
2.497E91 5.69!5E+Ol 1.363E+O2 
3.988E+Ol l.O4lE+O2 2.73WO2 
6.4bWOl 1.934E42 5.82it+O2 
l.Ob2E92 3.b4?002 1. mE+O3 
1.7bWO2 6.933E+O2 2.752E+O3 

256 512 
__---__-_-__ --___--_-___ 

1.OOOE+OO l.OOOE+OO 
8.162E-01 8.153E-01 
7*938E-01 7.92bE-01 
8.262E-01 8.249E-01 
8.94OE-01 8.9X-01 
l.mE+OO l.OOOE+W 
l.lblE+C@ 1*1b5E+OO 
1.414E+OO 1.429E+oo 
1.835E+OO 1.8sE+o(1 
2.579Em 2.737Ecoo 
3.984Ewo 4.472Em 
b.&ME+OO 8.29M+OO 
1.277E+Ol 1.73lE+Ol 
2.597E+Ol 3.978E+ol 
5.61#+01 9.814EW 
1,274E+O2 2.547E+O2 
2.987E+O2 6.854E92 
7*18OE+O2 1.892m3 
1.75mO3 5.32lE+O3 
4.3b7E+O3 1.5leE+o4 
l.O97E+O4 4.3786+04 

1024 
--_--------- 

l.OOOE+OO 
8.148E-01 
7*92OE-01 
8.242E-01 
8.924E-01 
1.woE+oo 
l.l67E+OO 
1.44OE+OO 
1*924E+M 
2.877E+W 
4.9b3E+OO 
I. 002E+Ol 
2.332.E+01 
b.O73E+Ol 
1.71Z.t+02 
5.095E+O2 
1.573E+O3 
4.988E+O3 
l.bllE+O4 
5*28OE+O4 
1.749E+O5 

INF 
_----- 

1.OOoE+00 
8.143E-01 
7*913E-01 
8.23X-01 
8.?17E-01 
l.OOOE+Oo 
1,17oE+oo 
1.4blE+W 
2.05OE+Oo 
3*829E+oO 

21 
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BI(N.r,w) for r = 1.1 

hl\N= 4 8 16 32 
___-__--_-____-_--__ -_-m-mm-m---- -----------____--_------ 

-2 : l.OOOE+OO l.OOOE+OO 1.oooE+oa l.OOOE+OO 
-1.8 : 9.527E-01 9.24X-01 9.0&2E-01 8.994E-01 
-1.6 : 9*415E-01 9*048E-01 8.83lE-01 8.709E-01 
-1.4 : 9.49x-01 9. WE-01 8.94&01 8.82%-01 
-1.2 : 9. b9bE-01 9*482E-01 9.34lE-01 9.254E-01 
-1 : l.OOOE+OO l.ooOE+OO l.OOOE+OO l.OomoO 
-.e : l.O4WOO 1.072E+00 l.O9bE+OO 1.114000 
-.b : 1.08WOO l.l&eOO 1.23OE+OO 1.28lE+OO 
-.4 : l.l47E+OO 1.2@000 1.4lbE+OO 1.52WOO 
-.2 : 1.217E+Oo 1.444E+OO 1.67lEMO 1.809E+OO 
0 : 1.298Em l.b43E+OO 2.02bE+OO 2.435E+OO 
.2 : 1*39x+00 1.89WOO 2.52lE+iM 3.27X*00 
.4 : l,504E+OO 2.223E+OO 3.219E+oo 4.575E+OO 
.b : 1.b3x+OO 2.b4OE+oo 4.213BOO b.k39E+OO 
.t : 1.783Ern 3.177E+OO 5.b37E+OO 9.954E+OO 
1 : 1.957E+OO 3.87OE+OO 7.69tsWO 1.535E+Ol 
1.2 : 2.158E+OO 4.7bbE+OO l.Ob9E+Ol 2.422E+Ol 
1.4 : 2.391~+(. 5.929EwJ 1.5Wf+O1 3.897E91 
I.6 : 2.bbOE+OO 7.443Em 2.154EtOl 6.3b&Ol 
1.8 : 2.972Ew-N 9.418E+Oa 3.lllE+Ol 1.053E42 
2 : 3.33E+oo lI2OOE+ol 4.533E+Ol l.?ME+O2 

kJu\ N= 4 8 lb 32 64 128 256 512 
--------- -----------_ .__--__-____--__--__----. .__-___---__. .---- --- ----. .-v-------v - - - - - - - m - - - - - - .  .-- -_-_ -__-_ 
-2 : l.OOOE+Oo l.OOOE+oO l.camOo l.OCWE+OO l.woE+OO l.OOOE+OO l.OOmOO l.OOoE+OO 
-1.8 : 9.9OlE-01 9.836-01 9.79bE-01 9.774E-01 9,7blE-01 9.755E-01 9.752E-01 9.75OE-01 
-1.6 : 5.845E-01 5.737E-01 9.&9E-01 9. b3OE-01 9. bO7E-01 9.55s-01 9*589E-01 9.586E-01 
-1.4 : 9.837E-01 9.719E-01 9. b4lE-01 9.593E-01 9.5b5F01 9*55OE-01 9.54lE-01 9.537E-01 
-1.2 : 5.&E-01 9.799E-01 9.7386-01 9. b99E-01 9.67%01 9.bblE-01 9.65X-01 9.646E-01 
-1 : l.OOcE+~ 1 * OMe(fi l.OOOE+OO l.MOE+M l.OOOE+w l.MOE+OO l.OOOE+OO l.OOOE+OO 
-.8 : l.OlPE+OO l.O35E+w l.O48E+OO l.O53E+OO l.O&E+o(, l.Ob#+OO 1.07mOO l.O74E+Oo 
-.& : 1*04&-00 l.O9OE+OO l.l2bE+OO l.l5bE+OO 1.178E+CQ l.l95E+OO 1.207EMO 1.215E+00 
-.4 : !.@84E+OO 1.1b8E+M~ 1.246EtOO 1.31x+0@ 1.373E+OO 1*42oE+Oo 1.45mOO 1.487E+OC, 
-.2 : l.l33E+OO 1.277E+M 1.425E+OO 1*5b8E+OO 1.702E+OO 1.824E+OO 1.934E+OO 2.03lE+OO 
0 : 1.195E+OO 1.427E+OO l.b8BE+oo 1.97lE+OO 2.267E+M 2.57wOO 2.884Em 3.198E+OO 
.2 : 1.273E+OO l.b29E+OO 2.075E+OO 2.615EW 3.25bE+OO 4.m+Oo 4.87&+00 5.882E+OO 
.4 : 1.3%+00 l.rOlE+OO 2.b44E+W 3.b59EKJO 5.025E+OO 6.847E+OO 9.267E+O4 1.247E+Ol 
.b . 1.48bEMO 2.2b4Em 3.485Em 5.37lE+OO 8.262E+OO 1.267E+Ol 1.937E+Ol 2*555E*o1 
.8 : 1. b2BE+W 2.75OE+Oo 4.733E+Oa 8.215E+OO 1.43lE+Ol 2.494Em 4.347E+Ol 7.57bE+Ol 
1 : l.BOOE+oI~ 3.4OOE+OO b.bOOE+oo l.W+Ol 2.5sOeOl 5.14OE+Ol 1.026E+O2 2.05wO2 
1.2 : 2.007EdO 4.27lEMO 9.409E+OO 2.114E+Ol 4.wOE+ol l.O9bE+O2 2.5lOE+O2 5.7%@02 
1.4 : 2.255EMo 5.439E+OO 1.3bbE91 3.512EMl 9.142Em 2.395E+O2 6.259E+O2 l.&59E+O3 
1.6 : 2*552E+Oo 7.012E+OO 2.014E+Ol 5.935E+Ol 1,773E+O2 5.334E+O2 l.bllE+O3 4.874EW 
1.8 : 2.908Em 9.132E+o 3.O&E*Ol l.O17E+O2 3.487E+O2 1.20%~3 4.179EuI3 1.453E+O4 
2 . 3.333000 1.2OOE+Ql 4.5x%+01 1,7bOE+o2 6.933E+O2 2.752E+O3 l.O97E+O4 4.37aE+O4 

Bl(N,rtnu) for r = 2 

64 128 
----------- m---mmm---_e 

l.OOOE+OO 1.OOOE+OO 
8.94aE-01 8.924E-01 
0.642501 8. bO7E-01 
8. TSSE-01 8.717E-01 
9.2OlE-01 9.17lE-01 
1.OOOEMO 1.oooE+oo 
l.l26E+oO l.WE+OO 
1.31#+00 1.34bEW 
l.b17E+OO 1.692000 
2.09lEa 2.275E+oo 
2.8afwI 3.3ME+OO 
4.lbwOo 5.199E+OO 
6.398EWl 8.828E+W 
l.O35E+Ol 1.bO2WM 
1.75OE+Ol 3.04mOl 
3.065E+Ol 6.12&01 
5.52lE+Ol 1.2&3E+O2 
l*OlbE+O2 2.bbbE+O2 
1*904E+O2 5.730642 
3.614E+O2 1.249+03 
6.5%X+02 2.752Eto3 

256 

l.OOOE+OO 
&9llE-01 
8.5%8E-01 
8.696E-01 
9. ME-01 
l.OOOE+OO 
1.139000 
1.36bE90 
1.75lE+OO 
2.44OE+oO 
3.752E+OO 
6.4OWOO 
1.2OmOl 
2.4&x+01 
5.3b!mQl 
1.22?Ew2 
2.094E+O2 
7.0llE+O2 
1,73lE+O3 
4*33x+03 
l.O97E+O4 

512 1024 INF 
-mm-mm------ --~-~--~------~~~~ 

l.oooEMO l.OOOE*oo l.OOmOO 
8.905E-01 a.wiE-01 &898E-01 
8.5X-01 8.574E-01 8.5655-01 
8.66s-01 &b&X-01 8.674-01 
9.145E-01 9. MOE-01 9. ME-01 
1.oooE+oo l.aME+ca l.OOOE+OO 
l.l42E+OO l.l44E+oO 1*147E+oO 
l.379E+OO l.s9E+OO 1*408E+O@ 
1.797E+oo 1.83mOa 1.948Em 
2.58bEm 2.714EMO 3.593Em 
4.205E+OO 4.bblE+OO 
7.797E+OO 9.402EulO 
l.b32t+Ol 2*197E+Ol 
3.771E91 5.7wMl 
9.3bbEm l.b34E+O2 
2.449E+O2 4.698E+O? 
6. b40002 1.524E+O3 
l.e47E+O3 4.87OE+O3 
5.237E+o3 1.58bE+O4 
1.5ObE+O4 5.23%+04 
4.3786+04 1.74#+05 

1024 
m-m--------- 

l.OcaE+OG 
9*749E-01 
9.594E-01 
9.534E-01 
9.64bE-01 
l.OOWOO 
1. o;r5E+wJ 

l.ZZlE+O’J 
1.505E+oo 
2.117E+@? 
3.515E+w 
7.042E+OO 
1. b7CWOl 
4.498E+ol 
1,32OE+O2 
4.098E+O2 
1,321E+O3 
4.374E+O3 
1.474+04 
5.053E+O4 
1*749E+O5 

INf 
__-___ 

1.m+wJ 

9.748E-01 
9.582E-01 
9.533-01 
Y.M?E-01 
l.OOOE+m 
1*077E+oo 
1.233EeO 
1.58x+00 
2.704EW 

22 

TN-3 17 



Bl(N,r,u) fw r = 4 

tkl\ N= 4 8 16 32 M  128 

-------- w--------m-e-. .m---Immm-m-. .---e-mmmmam. . w - - - - - - - - - * .  . -mm- -e - - -w- .  . -e -w-- - -mm 

-2 : l.OOOE+@l 1.OOOE+OO 1.oooE+oo l.OOWOO l.MOOOO l.OOWOO 
-1.8 : 9.9x-01 9.957E-01 9.94s01 9.94QE-01 9.936E-01 9.93s01 
-1.4 : 9*95+x-01 9.918E-01 9.896E-01 9,@4E-01 9.87bE-01 9.87X-01 
-1.4 : 9.941E-01 9.898E-01 9.86x-01 9.851E-01 9.84oE-01 9.e34E-01 
-1.2 : 9.5sx-01 9.916E-01 9.89oE-01 9.873E-01 9.8&E-01 9.85&F01 
-1 : 1.oooE+oo l.MOE+OO l.OOOMO l.OC@E+OO 1.oooE+oo l.WOE+OO 
-.8 : 1.010000 l.O19E+OO 1.026E+00 l.O31E+OO 1.035E+00 l.O37E+OO 
-.4 : 1.027EtOo 1.o53E+oo 1.07mOO l.O93E+OO 1.107E90 l.l17E+OO 
-.4 : 1.054000 1.109E+OO l.MOE+OO 1.205WO 1.24X+00 1.274EWO 
-.2 : 1.092E+oo 1.194moO 1.298E90 1.399EMO 1.494E+OO 1.5WMO 
0 : l.l44E+OO 1.318EaO 1.514E+oO 1.72WOO 1.949E+OO 2.179Em 
.2 : 1.214Em 1.49si+OO 1.848E+oo 2.27wOO 2.763000 3.377E+QO 
.4 : 1. WE+00 1.742E+OO 2.35bE+OO 3.196E+oO 4.32bE+OO 5.834E+oo 
.4 : 1*415E+OO 2.w2E+OO 3.129E+Oo 4.74moO 7.229E+oO l.lOlE+Ol 
.8 : 1. mE+Oo 2.548E+Oo 4.30x+00 7.385E+OO 1.27mOl 2.219Ew 
1 : 1.727E+oO 3*182E+OO 6.091EMO l.l91E+Ol 2.355E+ol 4.b82Ew 
1.2 : 1.938E+OO 4.045E+OO 8.82bE+OO 1.974E91 4.472E+ol 1*02OE+O2 
1.4 : 2.194E+OO 5.219E+oo 1.303E+Ol 3.34oE91 S.b8&+01 2.27x+02 
1.4 : 2.504E+OO 6.819E+OO l.mE+Ol 5.745E+Ol 1.715E+O2 5.1Kwo2 
1.8 : 2.879E+QO 9.OObE+OO 2.96OEtOl 1.OcoE+O2 3.431EN2 l.l86E+o3 
2 . 3*3X6+00 1.2oOE+o1 4.53x+01 1.7tmo2 6.933002 2.752E+O3 

Mu \ N: 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.e : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.4 : 
.e : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

Bl(Fc,r,w) for r = 8 

4 
.------m-m--. 

1.oooE*xI 
9.993E-01 
9.984E-01 
Q.978E-01 
9. WE-01 
l.OOOE+W 
1. cfJ6E+wJ 

1*017E+00 
1.037wo 
1.069DOO 
1.11bE+Oo 
1.181EW 
1.2ME+oo 
1*3EaE+m 
1.521E+OO 
l.b9bE+QO 
1.91OEti 
2.17OE+OO 
2.4&bE+OO 
2.87OE+OO 
3.z3x+oo 

8 14 32 b4 
.----mm---- ---e-m-m----- ---mm-mm---_ ---____-----. 

1.OoOE+Od 1.oooE+oo l.OOOE+OO l.OOOE+OO 
9.9&E-01 9.985E-01 9.983E-01 9.5wE-01 
9.973E-01 9.9bbE-01 9.912E-01 9.9bOE-01 
9.961E-01 9*95OE-01 9.944E-01 9*94oE-01 
9.963E-01 9*952E-01 9.?45E-01 9,94oE-01 
l.OOOE+OO l.OOOE+OO l.OOOE+M l.mE+wJ 
l.OllE+OQ l.O14E+OO l.O17E+OO 1.023300 
l.O33E+Oo l.O47E+OO l.O59E+oo l,Ob7E+OO 
1.07wOo l.llOE+OO l.l42E+OO l.l&moo 
1.145E+OO 1*223+00 1.299E+oo 1.371E+OO 
1.2SSE+OO 1*413E+00 1.584E90 1.763E+Oo 
1.42mcO 1.72oE+oO 2.w3E+oo 2.514EMO 
1. bvE+oO 2.202E+00 2.944Em 3.949E90 
1.991E+Ir0 2.9soE+Gu 4.43x+00 6.7obE+OO 
2.453E+OO 4.101E+OO 6.99bMO 1.206E+Ol 
3*087E+oO 5.87OE+OO 1.14x+01 2.257ENi 
3.953E+QO 8.59OE+OO 1.917EW 4.34lE+Ol 
5.135E+oo 1.279E+Ol 3.27t.Wl 8.515001 
6.751E+OO 1.9XWOl 5.4786+01 l.b95E+O2 
8.9b3EMO 2.94WOl 9.951E+Ol 3.4136+02 
1.2ooE+O1 4.5336+01 1.76OE42 4.93x42 

256 512 1024 IW 
- - s - - m - s m m - - - .  ._---_____------___-__________ 

1.OOOE*oo 1.OOOE+OO 1.OOceOO 1.cQ0EtOO 
9.934E-01 9.933E-01 9.933E-01 9.93x-01 
9.87OE-01 9.86#-01 9.865E-01 9.868-01 
9.831E-01 9.82x-01 9.829E-01 9.8x-01 
9.85J-01 9.851E-01 9.8%X-01 9.84%-01 
1.OOOE90 1.ooOE+oo l.wOE+oO 1.oOOE+Oo 
1.039000 l.O4OE+OO l.O4lE+OO l.O42E+OO 
l.l24E+OO l.l29E+oO 1.132E+oo 1.14OEm 
1.299E+OO 1.31BmO 1.33x+00 1.mE+Oo 
1.b58E+oo 1.727E+oO 1.788E+OO 2.204E+OO 
2.414DOO 2.651E+OO 2.89OE+OO 
4.Ob7E+OO 4.86Etoo 5.784E+oO 
7.837E+OO l.O49E+Ol 1.399E91 
l.b7bE+Ol 2.55OE+Ol 3.87X+01 
3.86OE+Ol 6.71@+01 l.l7OE+O2 
9.336Ew 1.865E+O2 3.72bE+O2 
2.336002 5.35&+02 1.2X+03 
5.981E+O2 1.57X+03 4.154E+O3 
1.55mO3 4.714E+o3 1.428E+o4 
4.112EN3 1.429E+a 4.972E+o4 
l.O97E+o4 4#378E+o4 1.749E+o5 

128 256 512 1024 
__--_-_____-____________________________------- 

1.OOoE+oo 1.OOcwOO 1.OwE+oo l.OOM+Oo 
9.981E-01 9.981E-01 9.981E-01 9.981E-01 
9.9586-01 9.9586-01 9.957E-01 9.957E-01 
9.937E-01 9.93&01 9.93bE-01 9.93x-01 
9.938E-01 9.93&01 9.93x-01 9.935E-01 
1.OwE+oO l.wOE+oO 1.OOOE+w 1.oOOE+Oo 
1.021E+OO l.O22E+OO l.O22E+OO 1.023Em 
l.O73E+M 1.078EMO l.OBlEW 1.083EtOO 
l.l89E+OO 1.207E+OO 1.22OE+OO 1.231E+OO 
1.43bE+Oo 1.494E+oO 1.546E+oo 1.592Em 
1.949EtoO 2.137E+OO 2.32WOO 2.52OE+OO 
3.019E+oO 3.mE+OO 4.mE+OO 5.066E+OO 
5.2wiw 7*Ob2E+oO 9.414E+OO 1.25mol 
l.O17E+Ol 1.544EtOl 2.345001 3.559E+Ol 
2.09OE+Ol 3.63ceo1 4*315E+ol 1.099m2 
4.483E+Ol 8.935E91 1.784EW 3.545E+O2 
9.898E+Ol 2.265E42 5.19wO2 1,192E+o3 
2.2?0E+O2 5.86X+02 1.544EM13 4.071EM3 
5.099E+O2 1.54OE+O3 4.658E+O3 l.lllE+O4 
l.l79E+O3 4.09OE+O3 1.421E+O4 4.945004 
2.75X+03 l.O97E+O4 4.37@M4 1.749E+O5 

IHF 
.------- 

l.OOOE+W 
9.981E-01 
9.937E-01 
9.935E-01 
9.934E-01 
l.C@OE+OG 
1.023E+Oo 
1 Ic88E+oo 
1.244E40 
1.905E+OO 

23 

TN-3 18 



Bl(N,r,ru) for r = 16 

ItI\ N= 
--------- 

-2 : 
-1.8 : 
-1.b : 
-1.4 : 
-1.2 : 
-1 : 
-.8 : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.b : 
.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

hi\ N= 
____-__-- 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.8 : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.b : 
.R : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

4 

l.OOOE+OG 
9.999E-01 
?. 998E-01 
9.997E-01 
9.996E-01 
l.OwwO 
l.o02E+O0 
1 . 097E+(H 
1.019E+Oo 
1.043Em 
1.08X+00 
l.l4bE+oO 
1*233E+oo 
1.348E+oO 
1.494E+OO 
1.674000 
1*893E+oo 
2.158Em 
2.47E000 
2.8b5Em 
3.3?3E+oo 

l.WOE+OO 
9.999E-01 
9.997E-01 
9.994E-01 
9*993E-01 
1.oooE+OO 
1.003E+Oo 
l.olbEE+orJ 
1.039wJo 
1.09OEKJO 
l.l84E+W 
1.338EKJO 
1.572E+OO 
1.908E+OO 
2*378E*OO 
3.021E+OO 
3.898E+oo 
5.091EMO 
6.715000 
8.945E+OO 
1.2OOE+ol 

4 

l.OOOE+OO 
9.99e01 
9.99x-01 
9.992E-01 
9.9?'1E-01 
l.O@JE+OO 
1.003E90 
l.OllE+OO 
1.02mOO 
l.o54E+oo 
l.O97E+OO 
l.lboE+OO 
1.247E+oo 
1.3bOE+OO 
1. WE+00 
l.b81E+M 
1.89@+00 
2.1blEMO 
2.4NwOO 
2.8bbE+OO 
3.3330017 

8 
__--_-m----- 

1.OOOE+OO 
9.997E-01 
9.591E-01 
9.98s01 
9.984E-01 
l.OOOE+OO 
1.oobE+oo 
l.OZlE+OO 
1.O53E+OO 
1.113E*oo 
1.214000 
1.372mOO 
l.MbE+OO 
1.93%00 
2.404E+oo 
3.043E+ca 
3.914E+OO 
5.104E+OO 
6.727E+OO 
8.949EKQ 
1.2OOE+ol 

lb 

1.OOWClO 1.0OOEKM l.OOOE+OO 
9.99bE-01 9.99!!&01 9.99s01 
9.989E-01 9.987E-01 9.987E-01 
9.981E-01 9.979E-01 9.977E-01 
9.97#-01 9.97bE-01 9.974-01 
l.OWE90 1.oooE+OO l.OOOE+OO 
l.OMMO 1.01OE90 l.OllE+OO 
1.03E+OO 1.037Ew l.O43E+oo 
1.07mOO i.lOlE+OO 1.11#90 
l.l74E+oO 1.233EMO 1.289E+iM 
1.34tMO 1.489E+OO l.b39E+oo 
1.637E+OO 1.958E+OO 2.?4OE+oO 
2.1oBE+OO 2.794+00 3.717E+OO 
2.84mOO 4.254E+OO 6.409E+oo 
3.997E+oo 6.79woQ l.l69E+Ol 
5.7bbE+OO l.lZlE+Ol 2.211E+Ol 
8,49lE+OO 1.894E+Ol 4.28x+01 
1,27OE+Ol 3.251EMl 8.45oE+Ol 
1.923eOl 5.654E+Ol l.b88E+o2 
2.94OE+Ol 9.934E41 3,4ObE+O2 
4,53x+01 1.7bOE+O2 6.933E+o2 

Bl(N,r,mu) for r = 32 

8 14 
.----------_. 

l.OOOE+OO 
9.999E-01 
9.99&E-01 
9.99x-01 
9.991E-01 
1.O0OE+oo 
1.00%00 
l.O19E+oO 
1.057E+OO 
1.139000 
1*297E+tQ 
l.!sE+oo 
2.046E+Oo 
2.787E+OO 
3.94moo 
5.7ibmG 
8.446+00 
1.2bbE+Ol 
1.92mo1 
2.93WOl 
4.533E+Ol 

1.oooE+oo 
9.999E-01 
9.99bE-01 
9.992E-01 
9.99x-01 
1.oooE+oo 
1.oobE+oo 
l.O24E+oo 
1.073E+00 
l.l8bE+OO 
1.42OE+OO 
1.871EW 
2.69?000 
4.147Em 
b.b8sE+oo 
l.lllE+Ol 
1.88x+01 
3.242E+Ol 
5.b44001 
9.92&x1 
1.7bWO2 

32 64 

32 64 

. m - - m - - - - - - - .  

l.OOOE+OO 
9.99x-01 
9.99bE-01 
9.991E-01 
9.989E-01 
l.OOOE+OO 
l.OObE+OO 
l.O28E+w 
l.O87E+O6 
1.23OE+OO 
l.!SOE+OO 
2.21aOO 
3.5bsE+OO 
6.231E+OO 
l.l49E+ol 
2.18wOl 
4.2blE41 
8.42X91 
l.baoO2 
3.4056+02 
6.933E+O2 

128 
.~~~~~--~---. 

l.COWOO 
9.998E-01 
9.99x-01 
9. WE-01 
9*988E-01 
1.oooE+oo 
l.O07E+O6 
l.O3OE+OO 
1*098E+OO 
1.271E+OO 
l.WE+OO 
2. bi’!X+oo 
4*729E+oo 
9.4o&wO 
1.9stE+o1 
4.344E+ol 
9.714Em 
2.2obE+O2 
5.07OE+o2 
1.17bE93 
2.752E+O3 

128 256 512 1024 In; 
~~~~~~-~-~---. .---mm------ ________-__-_----_------------ 

l.ocoE40 l.OWE+OO l.OmE*oo 1.OOceOO 1.OOwOO 
9.99sE-01 9.99s01 9.mE-01 9.995f-01 9.95%-01 
9.9&E-01 9.98bE-01 9.98bE-01 9.986E-01 9.98bE-01 
9.97bE-01 9.97bE-01 9.97bE-01 9.97x-01 9.97x-01 
9.97X-01 9.972-01 9.972E-01 9.972E-01 9.971E-01 
l.OOOE+OO 1.oooE+oo 1.ooOEm l.oOOE+OO l.cwMO 
1.012E+00 l.O12E+OO 1.01moO 1.013300 l.OlmO6 
1.047EMO l.OSOE+OO l.o52E*oo 1.O53E+oO 1.05mOo 
l.lsE+OO 1*147E+oO l.l57E*oo i.lME+OO 1.1eeE+oO 
1.33X+00 1.385000 1.42SE*oo 1.4blE+OO 1.705EMO 
1.794E+oo 1.952E+00 2.112E40 2.273000 
2.787E+00 3.307E+OO 3.907E+M 4.599Em 
4.9!w+OO 6.587E90 8.7S4E+QO 1.162EW 
9.69bE+# 1.4b9EMl 2.22wOl 3.379Ew 
2.02J+Ol 3.51if91 6. mE+Ol 1.062fM2 
4.38wQl 8.747EW 1.74bE+o2 3.489E+o2 
9.769E91 2.23boO2 5.127E+O2 l.l77E+O3 
2.213mo2 5.817E+O2 1.53aw3 4.039003 
5.077E92 l.s33E+O3 4.m+O3 1.4omo4 
l.l77E+o3 4.08x+03 1.41!ma 4*93bE+O4 
2.75mO3 1.097E94 4.3786+04 1.749E95 

256 

. - m m - w - - - - - - .  

l.OOOE+OO 
9.998E-01 
9*99?E-01 
9.991E-01 
9.98@-01 
l.OOOE+OO 
l.CWE+OO 
l.O32E+OO 
l.l07E+oo 
l.WE+OO 
1.81#+00 
3*097E+Oo 
6.27mOO 
1.424E+Ol 
3.447E91 
8.bSWOl 
2.222+02 
5.7wE+O2 
1.531E43 
4.081E93 
1*097E+O4 

512 
.-mm--------- 

1.OmE+00 
9.998E-01 
9.99s-01 
9.991E-01 
9.988E-01 
1.oooE+oo 
l.WE+OO 
1*033E+Oo 
l.l14E+oo 
1.3X+00 
1*957E+OO 
3.MmOo 
8.32WOO 
2.1smol 
5.952E+Ol 
1.728E+O2 
s.O97E+O2 
1.527E+O3 
4.632003 
1.418E+o4 
4.378E+O4 

1024 
mm---------- 

l.OOOE+OO 
9.99%-01 
9.99%-01 
9.991E-01 
9.98w01 
l.C0OE+OO 
1*007E+00 
l.O34E+oo 
l.l19E+Oo 
1.3b8E+OO 
2.095Em 
4.272E+OO 
l.l02E+ol 
3,27OE+Ol 
l.C42E+O2 
3.453E+O2 
1.17oE93 
4.027EM3 
1.40%04 
4.934E+O4 
1.745E+O5 

INF 
_____- 

l.OOOE+CJO 
9.99x-01 
9.99sE-01 
9.991E-01 
9.988E-01 
l.OOOE+OO 
1.008E+Oo 
l.O3bE+OO 
1.13bE+oo 
l.%3E+OO 

24 
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Bl(N,r,u) for r = b4 

mu\ N= 
m------mm 

-2 : 

-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.8 : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.b : 
.8 : 
1 : 

r. 1.L : 
1.4 : 
1.6 : 
1.8 : 
2 : 

tkl\ N= 
-------__. 

-5 * L . 

-1.8 : 

-1.6 : 

-1.4 : 
-1.2 : 

-1 : 
-.8 : 
-.b : 

-.b : 

-.L : 

6 : 

.? : 

.b : 

.6 : 

.E : 

1 : 
1.2 : 
1.4 : 
1.6 : 

1.8 : 
2 : 

4 
m----mm-m---. 

l.OOOE*oo 
l.oooE+OO 
9.999E-01 
9*999E-01 
9.998E-01 
l.OOOE+OO 
l.OOlE+OO 
l.OOX+oo 
l.O14E+oo 
1. o3sE*oo 
1.073000 
1.135000 
1.224E+oo 
1.34lE+OO 
1.489Em 
!.67oEdo 
1.89wOO 
2.15bEm 
2.477E+OO 
2.865000 
3.33moo 

8 lb 32 64 128 256 
.----------- _----_--____-_-___-_---------------------------- .-_-m-m--e--- 

l.OOOEMO l.OoKeo l.oOmOO l.OoOE+OO l.OOOE+OO l.OOK+CQ 
l.oooE+@J !.om+oo l.Mma l.woooO !.OoOEMO !.OOOE+QO 
9.999E-01 9.999E-01 9.999E-01 9.99x-01 9.999E-01 9.998E-01 
9.996E-01 9.W7E-01 9. w7E-01 9. w7E-01 9. w7E-01 9. W7E-01 
9. W7E-01 9.w6E-01 9.995E-01 9.995E-01 9.995E-01 9.9%E-01 
l.oooE+OO l.OOoE+OO 1.OOOE+00 l.OOOE+OO l.OOOE+Ou l.OOOE+OO 
l.@X!E+OO !.oomoo 1.003E90 l.w4E+oo l.O04E+OO l.O04E+OO 
l.O09E+Oo l.O13E+OO 1.01bE+00 1.01ma 1.02OE~ 1.02lEMO 
1.028Em l.O42E+OO l.O54E+OO !.064E+OO !.072E+OO !.07aE+00 
l.O73E+Oo 1.112E+OO l.l5lE+OO 1.187E400 l.ZOE+OO !.249E+OO 
l.lblE+OO 1.2blE40 1.369E+OO 1.482EO !.bOR+OO 1.719EMO 
1.31x+00 1.53mOO !.8m+OO 2.129E+OO 2.5obE4m 2.944E+OO 
l.548E+Oo 2.003UOO 2. b24DOO 3.4blE+OO 4.57%&00 b.WWO 
l.W9EMO 2.749E+oo 4.08OE+OO b.l19E+OO 9.229E+OO 1.396E+Ol 
2.3636+00 3.909E+OO b.b24E+oo l.l37E+Ol !.9bbE+Ol 3.41 !E+Ol 
3.OIOE+oO 5.691E+'JO l.l05E+Ol 2.177E91 4.322001 8.61!E+O! 
3.89lE+W 8.429DOO 1.879E+Ol 4.25lE+Ol 9.69OEtOl 2.2186+02 
5.087E+a 1.2b5E91 3.238EWl 8.415E+Ol 2.204E92 5.79X+02 
b.716E+OO l.?l9E+ol 5.644E+Ol l.b85E+O2 S.Ob7E+O2 1.53x93 
8.948+00 2.9SE+ol 9.5'27E+Ol 3.404E+O2 1.174E93 4*08OE+O3 
1.2OOE+o1 4.533E+Ol 1.76OE+O2 6.933+02 2.752E+O3 l.O97E+O4 

Bl(N,r,u) for r = 1% 

4 
.-----------. 

1.OOoE+OO 
1.omE+oo 
1.OwE+00 
1.OOOE+00 
9.999E-01 
!.oo(x+&' 
l.OCIlE+OC 
1*003Em 
1. o1OE+OO 
l.O29E+OO 
l.ob#+oo 
1.127EKm 
1.217E+OO 
1.33bhwJ 

1.48bE+OO 
l.b6E+oo 
1. wE+OO 
2.l54wo 
2.477E+M 
2.8b5E+w 
3*333E+Oo 

8 lb 32 64 128 256 512 
.___-----_- -----------_m ____--_--_------___-________________ ---_------__-----_------ 

l.OOOE+OO l.OOOE+OO l.OOOE+M 1.OOcE+00 1.OOOE+oo 1.OOmOo 1.OOoE+OO 
l.oGQE+oo l.oooE90 1.cKKE+00 l.Ooma@ l.OcM+oo l.OOoE+oO 1*OOOE+cQ 
l.OOOE+OO l.OOOE+OO l.OOOE+w 1.mE+oO 1.OoOE+OO 9.999E-01 9. w9E-01 
9.9?9E-01 9.999E-01 9.9?9E-01 9.999+01 9.999E-01 9.999E-01 9.999E-01 
?.?99E-01 9.996E-01 9.998E-01 9.998E-01 9.896-01 9.998E-01 9.99&z-01 
1.9OOE+W 1.oooE+oo 1.OOaE+oO 1.OoOE+OO l.wOE+oo 1.OooE+OO l.OOOE+OO 
l.OOlE+OO l.O02E+OO ~.CGWJO l.OUE+OO 1.002E+OO 1.002Em 1.002E+OO 
l.OObE+OO l.OmE+Oo l.OlOE+M l.O12E+OO l.O13E+OO l.O14E+OO l.O14E+OO 
1.021Et00 1.031E+OO 1.04OE+OO l.O47E+OO l.O53E+OO 1.o58E+oo l.Ob2E+OO 
l.ObOE+Oo 1*092E+oo l.l24E+oO l.l53E+OO 1.18lEaO 1.205EtOO 1.22bEm 
1.144EtOO 1*232E+OO 1.329E+Oo 1.43OEm 1.534E+Oo l.b4OE+OO 1.748Em 
1.294E+OO l.SME+OO 1.759E+OO 2.Ob2E+OO 2.4lbE+OO 2.827E+OO 3.303E+OO 
1 , 532E+oo 1.972+00 2.57bE+OO 3.3#E+OO 4.471E+OO 5.909E+OO 7.813E+OO 
1.877E+OO 2.725E+OO 4.037E+OO 6.048E+oo 9.115E+OO 1.378E+Ol 2,08bE+Ol 
2.354EtOO 3.89lE+t@ 6.589E+OO l.l3lE+Ol 1.955E+Ol 3.39lE+O1 5.893001 
3.OomOO 5.679E+oo l.l03E+Ol 2.!72E+Ol 4.3llE+Ol 8.5WE+O1 1.714E+Oo? 
3.887E+OO 8.42lE+OO 1.877E+Ol 4.246001 9.68OE+Ol 2.215E+O2 5.079E92 
5.08mOO 1*265E+Ol 3.237E+Ol 8.4llE+Ol 2.203002 5.79OE+O2 1.52sE+o3 
b.715WO 1.?19wl 5.64291 l.b84E+O2 5.067E+O2 !.53OE+O3 4.629E+O3 
8.943E*oc, 2.93eOl 9.92b.E+01 3.4'ME+O2 l.l7bE+o3 4.08OE*o3 1.418E+a4 
1.2OOE+ol 4.533E+Ol 1.7bOE+O2 6.933E+O2 2.7%X3 1.097Ew 4.37mO4 

512 

!.OOOE+OO 
!.OOOE+oo 
9.99%-01 
9.w6E-01 
9.99s01 
l.OOOE90 
l.O04E+OO 
l.OZE+OO 
l.O83E+OO 
1.275E+OO 
1.84OE+OO 
3.45OEaO 
8.OrJE90 
2.114E+Ol 
5.929E+Ol 
1.719002 
5.085E+O2 
1.52bE+O3 
4.63OE43 
1.418E+O4 
4.3786+04 

1024 
.------mew--m 

l.MOE*oo 
l.OOOE+OO 
9.998E-01 
9.wbE-01 
9.995E-01 
l.OOOE+OO 
l.OME+@J 
1.02X+00 
1.087EMO 
3.~~ 
1.9blE+OO 
4.03moO 
l.cwE+Ol 
3.203EKJl 
l.O31E+O2 
3.435002 
l.l67E+O3 
4.022E+O3 
1.402004 
4*933E+O4 
1.749Eto5 

1024 
.--------_--- 

1. oOOE+OO 
I.&DOE+00 
9.999E-01 
9.W9E-01 
9.998E-01 
l.WOE+OO 
1 . Oa?E+Oo 
1.o15E+OO 
l.OGE+OO 
1.245E+OO 
1*85bE+OO 
3.851E+00 
l.O33E+Ol 
3.16OE+Ol 
1.025E+O2 
3.42&T+@ 
1.16boO3 
4.021E+O3 
1.402E+04 
4.932EM4 
1.749Ea 

IC 
.-a-w-- 

l.oooE+OO 
l.OOOE*oo 
9.998E-01 
9.w6E-01 
9.995E-01 
l.OOOE+OO 
l.O04E+OO 
l.O24E+oO 
l.1ooE+OO 
1.45bE+OO 

INF 
.------ 

1. oOOE+OO 
1, (KjCli+i)<l 

9*9?9E-01 
9. m-01 
9.996E-01 
l.OOOE+OO 
l.O02E+M 
l.O15E+# 
l.O74E+OcJ 
1.375E+O)O 
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Bl(N,r,u) far r = 256 

thl\N= 4 8 lb 
-_------__------___--------------. .-m---mm-m-e 

-2 : 1.wmoo l.mOE+OO l.GGOE*oo 
-1.8 : l.OOOE+oo l.ooce40 l.WOE+oo 
-1.6 : 1.OOmOo l.OOOE+OO l.COOE+OO 
-1.4 : 1.OOOE+oo 1.OOawO l.O@JE+OO 
-1.2 : l.oOOE+OO 9*999E-01 9.999E-01 
-1 : l.OOOE+OO l.oOOmO 1.OOWOO 
-.8 : l.OOOE+OO 1.001E+00 l.C01E+OO 
-.6 : l.O02E+OO l.oo(E+OO l.O05E+OO 
-.4 : 1.OOmOo l.O16E+Oo l.O23E+OO 
-.2 : 1.024E+OO l.O5OE+OO 1.077EMO 
0 : l.O59E+Oo 1.13OE+OO 1.21OE+OO 
.2 : l.l21E+OO 1.28OE+OO 1.479Em 
.4 : 1.212E+OO 1.52OE+OO 1.952EHM 
.b : 1.333Em l.wE+Oo 2.709Ew 
.8 : 1.484E+OO 2.35OE+OO 3.881E+OO 
1 : 1.668E+W 3.003000 5.67X+00 
1.2 : 1.889Em 3.&E+oo 8.418E+OO 
1.4 : 2.15bE40 5.084E+OO l.Zb4E+Ol 
1.6 : 2.477EM b. 71SEtOO 1.019E+o1 
1.8 : 2. WE+00 8.943EtOO 2.938E+Ol 
2 : 3.333E+oo 1*2OOE+o1 4.533Etol 

BltN,r,nu) for r = 512 

r(u\N= 4 8 15 32 
_--_------_---_--___. .-----_---_-- -_----___-__. ._-----_--- 

-2 : 1 rn oOOE+Oo 1 . OOOE+Oo 1.OOOE+00 1.OOOE+Oo 
-1.8 : 1.oooE+r)? 1.oOOE+oo 1.OOoE+ml l.WOE+OO 
-1.5 : 1,00OE+00 1.OOOE*oo 1. oOOE+ocJ l.OOOE+MJ 
-1.4 : 1*OOOE+~ 1 I OOOE+oc~ l.OOGE+OO l.l)OWO0 
-1.2 : 1. ooxi+oc, l.@%*wJ l.OOOE+clo 1. o.w+Oo 
-1 : l.OoOE+?c) l*OOOE+I~ l.OOOE+CN 1.OCOE+cJO 
-.F, : 1.OOOE+(ti 1 I OOoE+Oo l.OOlE+CK~ l.OOlE+OO 
-.b : l.OOlE+OO l.O03E+h? 1*oO4E+00 1.OO4E+oo 
-.4 : l.O05E+K~ 1.012EM l.@17E+OO 1 . 022E+OO 
-.2 : 1. o2oE+Oo 1*042!+wJ l.Ob4E+w 1.085E+oo 
0 : l.O54E+K l.l18E+OC l.l51E+OO 1.27woo 
.2 : 1*116E+M 1.2b8EHti 1.45OE+OO 1.692EW 
.4 : 1.26WN l.Sl?E+OG 1.93bE+Oli 2.51bE+OO 
.b : 1.331E+Oo 1.854Em 2.699E+OO 3.992E+Oo 
.E: : 1,48J+ir<~ 2. WE+OCJ 3.87X+00 6.55K+OO 
1 : 1.557E+oo 3.OOlE+OO 5.67OE+OO l.lOlE+Ol 
1.2 : 1*889E+cJo 3.8ewOO 8.41bEeO 1.875EE+o 1 
1.4 : ?.155E+OO 5.084E+oo 1,2b4E+Ol 3.236wl 
1.5 : 2.477i+OO 5.714E+O6 1.919EMl 5.b42E+Ol 
1.8 : 2.86E+OO 8.943000 2.938EMl ?.52bE+Ol 
2 : 3.333E+OO 1.2OOE+o1 4.!mE+ol 1.7ueo2 

32 

1.OOOEMO 
l.OME+OO 
l.OOOE+OO 
l.OCWOO 
9.599E-01 
l.COOE*oo 
l.OOlE+OO 
l.O07E+OO 
l.O29E+oO 
1.1omoO 
1.29bE+M 
1.722E+Oo 
2.541E+OO 
4.o1OEw 
b.S7OE+OO 
1. lOlEt 
1.87M+Ol 
3.23bEm 
5*b42E+Ol 
9.92bWl 
1.7bOE+O2 

44 
----------- 

l.OOWOO 
l.OOOE+OO 
l.OOOE+OO 
1.OOWOO 
9.999E-01 
1.OOOE*oo 
l.OOlE+OO 
1.O@E+OO 
l.O3SMO 
1.127Em 
1.388E+OO 
2.009E+oO 
3.335E+w 
b.MX+QO 
l.l27E+Ol 
2.169E+Ol 
4.2UE+Ol 
8.41OE+Ol 
1. b84E+02 
3.404E+O2 
b.936+02 

128 256 

44 
------- ______. 

1.OOOE+OO 
l.OOOE+OO 
l.OOOE+OO 
l.MoE+Oo 
1.MoE+cK~ 
l.OOOE+CX~ 
l.OOlE+OO 
l.O05E+N 
1 . OZbE+M 
l.l07E+W 
1. mEE+Oo 
1.957E+OO 
3.296E+OO 
5.973E+OG 
l.mE+Ol 
2. ME+01 
4.243EMl 
b. 41OE+ol 
1. b84E+O? 
3.4044+@2 
b,9?.3E+O2 

1.OMC+OO l.OME+OO 
1.OOWOO 1.OOOE+oo 
l.OOOE+OO l.OOWVO 
l.OOOE+OO 1.OOOEMO 
9.999E-01 9.999E-01 
1.OOOE+OO l.OME+oo 
l.OOlE+OO l.OOlE+OO 
l.OOWOO 1.009EMO 
l.O39E+OO 1.04x+00 
1.15OE+oo l.l7OE+Oo 
1.482000 1.577E+OO 
2.346E+Oo 2.737E+OO 
4.394E+OO 5.8OoEm 
9.042EaO 1.3bmOl 
1.948E+Ol 3.?8oE+Ol 
4.305E+Ol 8.578E+Ql 
9. b75E41 2.214E+o2 
2.202E+O2 5.789E+O2 
5.Obmo2 1.53OE+O3 
1.17bE93 4.mE+O3 
2*752E+o3 1,097E+O4 

128 
.--- - ------ 

l.OOS+OO 
l.@MX+O0 
1.OOM+OO 
l.OOOE+@O 
1.uooE+w 
l.OOOE+OO 
l.OOlE+OO 
l.OObE+OO 
1*03oE+~ 
1.1m+00 
1.43wOo 
2.29OE+Oo 
4.33eaOo 
8.594E+OO 
1.945F+ol 
4.303E+Ol 
9.57x+01 
?.202E+o2 
5.o&M+o2 
l.l75E+O3 
2.75x+03 

255 512 
----_____---- ------------ 

l.OOWO0 1.OOOE+Oo 
l.w+o() l.OOOE+OO 
l.OOOE+OO 1.OOOE+oo 
l.OWJE+OO 1.oooE+w 
l.OOOE+OO 1. WOE+00 
l.OOOE+OC l.OOOE+OO 
l.OOlEtMJ 1 .OOlE+OO 
l.OME+OO 1 .OObE+OO 
l.O32E+Oo l.O34E+OO 
1*142E+Oo l.l57E+Oi, 
1.526E+OO 1.614E+O6 
2.bb5E+OO 3.098Em 
5.721EM 7*553E+Oo 
1.359EW ?.OSbE+(:~l 
3.373E+Ol 5.85mol 
8.5726+01 1.711Eti2 
2.214E+o2 5.076E+O2 
5.789E+O? 1,52sE+@3 
1.53OE+o3 4. b28E+O3 
4.08OE+w 1.41 BE+04 
l.O?7E+O4 4.37ew4 

512 1024 IY 
___-___-____ -------~~~-~~-~-~~ 

l.OOOE+OO l.mE+OO 1.OOoE+oo 
l.OOOE+OO 1.mE*oo 1.OOOE+oo 
l.OOOE+OO 1.OOmoO l.oooE+MJ 
9.999E-01 9.999E-01 9.995i-01 
9.999E-01 9.99x-01 9.999E-01 
1.oooE*oo 1.mE+OO 1.m+OO 
l.OOlE+OO l.OOlE+OO l.OOlE+OO 
l.O09E+OO 1.01moo 1.01OE+00 
1.04&00 1.04eEm l.O5x+OO 
l.mE+oO 1.204EWO 1.311EW 
l.b74E+OO 1.772ENO 
3. ME+00 3.71wOO 
7.bm+OO l.OnE+Ol 
2.068E+Ol 3. Km+01 
5.873EW 1*02mo2 
1.712E+o2 3.421EW 
5.077E+O2 l.l65E+O3 
1.525E+O3 4*02OE+O3 
4.629E+O3 1.402W4 
1.41mo4 4.532E+O4 
4*378E+cu 1.749Em 

1024 
----------em 

l.OOOE+O0 
1*OOOE+OC 
l.OOOE+OO 
l.OOOE+OO 
1. @3oE+oo 
1.OOOE+oo 
l.OOlE+OO 
1*005i+m 
1.03bEm 
1.17cmN 
1*703E+00 
3.59EE+oo 
5*?73E*OO 
3.114E+@l 
1.02oE+OI 
3.419EW 
1, ME+03 
4.ox?E+O3 
1.402E+o4 
4.932E94 
1.74?E+O5 

INF 
______ 

l.OOOE+M~ 
1. @NE+00 
l*OOOE*Oc~ 
l*OOOE+90 
1. oooE+oo 
l,OOOE+MJ 
l.OOlE+OO 
l.OG7EWO 
1.041E+00 
1.251E+OO 
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Bl(N,r,*l) for r = 1024 

kl\ N= 4 8 14 
m-m-----w .__----__--__ ._--__-_----. .---w--w--_-. 

-2 : l.OOOE+GG l.OGGE+OG 1.OOOE+oo 
-1.e : 1.oomoo 1.oooE+oo l.OOOE+OO 
-1.6 : 1.GooE+GG l.WGE+GG l.GOOE+OG 
-1.4 : l.GGOE+OG l.OOOE+OO 1.ocKE+oo 
-1.2 : l.GGGE+OG l.COGE+GG l.OOGE+GG 
-1 : l.GOOE+GG l.OGGE*oo l.GOOE+OG 
-.a : l.COGE+GG l.OOOE90 l.WOE+OG 
-.b : l.GGlE+GG 1.oomoG l.KQE+OO 
-.I : l.WE+OG 1.@39E+oo 1.013000 
-.2 : 1.017E+GO 1.o35Em 1.054900 

0 : l.o49E+oG l.loBE+GG 1.175EMO 
.2 : l.llmGG 1.259E+GG 1. U4E+OO 
.4 : 1.2ME+OG 1.5owoG l.mE+oG 
.b : 1.33GE+OG 1.86OE+C@ 2. bpJ+tM 
.8 : 1.482E+GG 2.34wOo 3. B7moG 
1 : l.&7E+GG 3.COlE+OO 5.64mOo 
1.2 : 1. mf+GG 3.885000 8.4MEWO 
1.4 : 2.155Em 5.084E40 1.264Ew 
1.6 : 2*477E+w b.714EMO 1.919E+ol 
1.8 : 2.865E+(?o 8.943EMO 2.93mol 
2 : 3*333E+w 1.2GoE+Gl 4.53wOl 

h\ N= 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 

r( -1-L : 
-1 : 
-.8 : 
-.6 : 
-.4 : 
-.2 : 
G : 
.? : 
.4 : 
.L : 
.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

32 64 128 256 512 1024 

Bl(N,r,u) for r = 2048 

4 8 lb 
-_---------__--_-_------------------- 

l.GGwGG l.GwE+GG 1.GGGE+GG 
1.GGGE+cd 1.GGoE+GG l.GGOE+OG 
1.GGGE+GG l.GGGE+oG 1.GGGE+oo 
l.GGoE+G6 l.GGGE+oG l.Gc@E+oG 
l.GooE+GG l.GGGE+GG l.GwE+@G 
1.6wE*64 1.6wE+6G l.G@x+o6 
1.6G6E*@J 1.GGGE+GG 1.oc@E+oG 
l.GGlE+GG l.GOlE+OG l.OG2E+OG 
1. mE+GG 1.007E+W l.OlGE+GG 
1.014EW l.O3oE+GG l.G4bE+GG 
l.G45E+ca 1.1GoE+Go 1.162E+oG 
l.l68E+60 1.25tE+OO 1.431E+C@ 
l.ZME+M l.WlE+OO 1.916E+Oo 
1.329E+M 1.85mw 2.6886+00 
1.4f?X+GG 2.345E+M 3.87GEMG 
1.667E+GG 3.GGCHX~ 5.667E+OG 
1.8B9OGG 3.88X+00 8.415E+GG 
2.15mm 5*084E+GG 1.244E+Gl 
2.477EtO'J b.714ENO 1.919E+Ol 
?.8S+G6 8.94X+00 2.938EMl 
3.333Em 1.2oGE+Gl 4.53?E+Gl 

1.OOOE+M 1.cm3oo 1.oowoo l.OOOE+OO l.OOOE+OO l.OOOE+OO 
l.oooE+oG l.owE+oG 1.OOlX*oo 1.OOOE+OO l.WOE+OO l.OOOE+OO 
l.WOE+OO 1.OO0E+OO l.MOE+oo l.ODOE+OO l.OWE+OO l.MOE+OO 
l.OOOE+WJ l.OME+OO l.OOOE+OO l.oooE+oo 1.OOOE*oo 1.owE+oo 
l.OOOE+OO l.OCOE*oo 1.oooE+OO l.OOOE+OO 1.oc4E+oo 1.OOWOO 
1.OOoO l.OOOE+OO l.OOOE+OO l.OME+OO l.OOWOO 1.oooE+OO 
l.OOOEMO l.Oc@E+ca l.oooE+oG l.OOOE+OO l.OOWOO l.OWEMO 
l.O03E+OO l.O03E+M 1.004E90 l.O04E+oo l.O04E+OO l.O04E*oo 
l.O17E+O6 LONEMO 1.O2iE+OO 1.024&00 1.02bEMO 1.027E+OO 
1.07x+00 1.09WOO l.lObE+oO 1.12OE+oo 1.132E*oo l.lUE+OO 
1.24mOo 1.324EMO 1.402E+W 1.483E+OO 1.5b4E+oo l.MiE+OO 
l.bbSEMO 1.5WWO 2.245EMO 2.bOmOO 3.025EN.w 3.507E+00 
2*497E+Oo 3.2bmcQ 4.29mOO 5.bbaOO 7.472DOO 9.862DOO 
3.98OE+@J 5.9sx*oo 8.963EMO 1.354E41 2.049wl 3.102EKd 
b.552&00 1.124E91 1.942E41 3.3b9E+Ol S.B55E+Gl l.O18E+o2 
1.1omo1 2.1bDOl 4.3OlE+Ol E.WE*ol 1.711E+O2 3,418E+O2 
1.876E+Ol 4.243E*ol 9. b72EMl 2.213E92 5.07wO2 l.lbmO3 
3.236E+ol 8.409E+Ol 2.202002 5.785E+O2 1.525E*o3 4.02OE+O3 
5. ME+01 1.684E+O2 5.06&02 1.53wO3 4.6X93 1.402E+o4 
9.926E+Ol 3.404E+O2 l.l7bE+G3 4.08OEw3 1.418E404 4.932PO4 
1.74OE+O2 6.93x+02 2.FmO3 l.o97E+M 4.378E+O4 l.749E95 

32 

l.GGGE+GG 
l.GooE+oG 
l.OGGE+GG 
l.WGE+OG 
l.GCOE+GG 
l.GGGE+W 
l.GGGE+OG 
l.GG2WGG 
l.OuE+GG 
l.GUE+OG 
l.mE+oG 
l.b48E+M 
2.483Em 
3.972eOo 
6.548E+OO 
1.1ooE+ol 
1.875E91 
3.234E+ol 
5.642Em 
9.926E+@l 
1.7bWG2 

64 12B 256 512 1024 
.----------_-----_-_---. ._---- ----- ---. .______-_-- -_______-_-- 

l.oGGE+GG l.GGGE+oG l.GOOE+GG l.OOOE+OO l.WGE+GG 
l.oomGG l.mE+oG l.C@GE+OG l.oooE+o6 l.GWE+OG 
l.GGGE+oo 1.GGoE+oG 1.owEm l.C@OE+OO l.GGGE+Wl 
l.tmwG l.GccwG l.OGGE+OG l.OOOE+OO 1.oooE+oo 
1.c@GE+oo l.GGoE+GG l.G#E+CQ l.OOOE+OO l.GWE+GG 
l.oc@E*oo l.LwceGG l.C@GE+GG l.WOE+OO l.ooaE+GG 
1.GGGE+@I l.GWE+OG l.GOGE+CCl l.OOOE+OO l.LMoE+cJG 
l.o02E+6G 1.002Em 1.003E+OO l.@X+OO l.CKUE+OG 
1.015E+OO l.O17E+OO l.OlBE+oG l.O19E+OO 1.02GE+00 
1.076EW~ 1.089EW l.lOlE+OO l.l12E+OO 1.122EaG 
1.299DoG 1.372E+GG 1.44&900 1.521E+OO 1.59mGG 
1.9v&+cQ 2.2iJ9E+oG 2*54OE+c@ 2.9&E+oo 3.43wQO 
3.247E+OO 4.2bWOO 5.62OE+OO 7.412E+OO 9.78oE+oo 
5.941EMO 8.942E+oo 1.35lE+Gl 2.OUE+Ol 3.095E+Ol 
1*123E+Ol 1.941E+Ol 3.36mOl 5.851E+Ol l.OlEmO2 
2.167E+Ol 4.301E+Ol 8.5#E+Ol 1.71WO2 3.417E+O2 
4.243WOl 9.672001 2.213E92 5.075E+O2 l.l65E+o3 
8.409E+Ol 2.202E+o2 5.789E92 1*525003 4.02OE43 
1.684E+O2 5.066E92 1.5m303 4.6X+03 1.402E+O4 
3.404E92 l.l76E+O3 4*08OE+o3 1.41mo4 4*93x+04 
6. ?‘33E+O2 2.752iDO3 l.O97E+O4 4.378E* 1.749E95 

INF 
.---mm 

1.oooE+OO 
l.ODOE+OO 
1.OOOE*oo 
1.OOOE*oo 
1.OOWOO 
l.WOE+OO 
1.OOWOO 
1*004E+OO 
l.O31E+OO 
1.22oEm 

IW 
-m--w-- 

1.GGGE+GG 
l.OWE+W 
l.mE+GG 
l.oooE+6G 
1.c@oE+ocI 
l.o06E+oG 
l.O@3EWJ 
1. cmE+oG 
1.023Em 
l.l6bE+oo 
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Bl(N,r,m) for r = ININITY 

Nu\N= 4 8 lb 32 
-_c__--___-___-_-____ --------e-e. .--em-w-m--m- -----------. 

-2 : 1.oooE+oo l.MOE+OO 1.oomoo l.OOOE+OO 
-1.8 : 1.oomoo 1.oooE+oo l.OOCEMO 1.OOCC+OO 
-1.6 : 1.oooE+oo 1.OME+OO l.WOE+OO l.OOOE+OO 
-1.4 : 1.OOOE+OO 1.owE+oo l.OOOE+OO l.OOOE+OO 
-1.2 : 1. oooE+M l.oooE+oo 1.oooE+oo l.OOOE+OO 
-1 : 1.OOOE+OO l.OOOE+OO 1.OC6iMO 1.oooE+oo 
-.8 : 1.cmE+oo l.OWEW l.OOOE+OO 1.oooE+oo 
-.b : 1.OOOE+OO 1.0CM+OO 1.oooE+oo l.OOOE+OO 
-.4 : 1. oooE+w 1.owE+oo 1.OOOE+OO l.OOOE+JO 
-.2 : 1. oooE+00 1.ocoE+oo 1.oooE+oo l.OOOE+OO 
0 : 1.ocJoE+oo 1. oooE+c@ 1.oooE+oo l.OOOE+OD 
.2 : 1.091EtOO 1.21oE+oo 1 .3MJE+oi~ :.541E+OO 
.4 : 1.19SE+OO 1.487i+X 1.89oE+oo 2.441E+OO 
.b : 1.327E+OO 1.854E+OO 2.68OE+Oo 3.958EMO 
.8 : 1.482E+OO 2.34x+00 3.867E+OO 6.543wo 
1 : l,667E+OO 3.ooE+oo s.bm+oo 1.lOWOl 
1.2 : 1.EwE+oo 3*885E+OO 8.415000 1.87WOl 
1.4 : 2.1%E+oQ 5.084E+oo 1.264EtOl 3.236Etil 
1.6 : 2.477E+OO 6.714E+OO 1.919001 5. b42001 
1.8 : 2.869+00 8.943EtOO 2.93mOl 9.926E+Ol 
2 : 3.33x+00 1.2ooE+o1 4.533E+Ol 1*7&x+02 

61 128 2% 512 1024 INF 
.~~~~~-~~~~~. .-----------. .-mm..--------. . e _ - m m m - - - m - .  .-e--wm-Cmm-__m--_ 

l.COOE+oo 1.OOOE+OO 1.OOOE*oo l.OOOhOO l.oocooo 1.oooE+oo 
1.OOOE+M 1.@oEa l.OOOE+OO 1.oooE+oo 1.oooE+oo 1.oooE+oo 
1.OOOE+OO 1.OOOE* l.OOOE90 l.OOOE+OO l.o@moo 1.oooE+oo 
1.OOOE+OO l.oooE~ l.OOOE+OO 1.OOOE+OO l.oooE+o9 1.oooE+co 
l.OOOE+OO l.OOOE+OO l.oooE+M l.CWX+OO 1.oooE+oo 1.oooE+ob 
1.oooE*oo l.OOOEWO l.OOOE+OO l.OOOE+OO 1.oooE+oo l.oooE*iK~ 
1.OOOE+OO 1.oooE+oo 1.oooE+wJ 1.OME+W l.~+oo l.oooE-J 
1.oooE+oo 1.oooE+oo l.OOOE+OO l.OOOE+OO l.@%+oo 1.~+(16 
l.WCOC4 1.C@OE+OO l.OOOE+OO 1. oooE+oc 1.oooE+oo 1.oc@E+oo 
1.oOOOOO l.WOE+OO l.ODOE+OO i.OOOE+OO 1.oooE+oo 1.ooN+oo 
l.ocoE~oi~ 1.oooEMo l.GOOEHKl l.OOWOO l.COOE+OO 
l.7!57E+OO 2.009E+oO 2.303E+oO 2.642Ea.J 3.03x+00 
3.184wo 4.174E+cQ 5.489E+oo 7.231E+Cd 9.smoO 
%916E+OO 8.903EMO 1.344E+Ol 2.034E+Ol 3.08OE+Ol 
1.12mo1 1.94oE+o1 3.36wol 5.844001 l.O17E+O2 
2. WE+01 4.3oOE+Ol 8.567E+Ol 1.71OE+O2 3.417E+O2 
4.243001 9.672E*ol 2.213002 5.07mO2 1.165E+O3 
8.409E+Ol 2.202E+O2 5.789E+O2 1.52x+03 4.02oEto3 
1.684E+O2 5.066E+O2 l.s3OE+O3 4. b20E43 1.4omo4 
3.404E+O2 1.176E43 4.omE43 1.418EM4 4.932E+O4 
b.933E+O2 2.7%x+03 l.O97E+O4 4.378E+o4 1.749E95 

28 

TN-323 



Ear.mu) 

Ml \ r = .OOOl 

-2 : 6.mE-01 
-1.8 : 1.112E-01 
-1.6 : 1.074E-02 
-1.4 : 3.2os-03 
-1.2 : 5.5&E-04 
-1 : l.aYx-04 
-3 : 1.66X-05 
-.b : 3.687E-06 
-.I : 8.12lE-07 
-.2 : 2.159E-07 
0 : 7.72hE-00 
.2 : 3.90&08 
.4 : 2.5906-08 
.b : 2.013E-00 
.0 : 1.7OoE-08 
1 : l.sooE-00 
1.2 : 1.357E-08 
1.4 : 1.245E-a 
1.6 : l. lSZ-08 
1.8 : l.O72E-Oe 
2 : l.@X-08 

.m3 .OOl 
~~~~-~~~~~~~ ~~~~-~~-~~~~ 

b.WE-01 b. WE-01 
I.=-01 1.742E-01 
2.9Oe02 4.706602 
b. 194E-03 1.276E-02 
1.34SE-03 3.52s~03 
3.OOs-04 l.OOOE-03 
6.95&-05 2.94x-04 
1.7lsE-05 9.23lE-05 
4.670E-Ob 3.174E-03 
1.5lOE-06 1.26X-05 
6.24OE-07 6.obs-06 
3.397E-07 3.mE-Ob 
2.3llE-07 2.5306-04 
l.eos-07 2.OOlE-06 
1.529E-07 I. 697E-06 
1.3506-07 l.SOOE-04 
1.22lE-07 1.3s&-ob 
1.1202-07 1.24~~06 
l.O37E-07 l.l52E-06 
9.64508 1.072E-06 
?.OOCC-00 l.OOOE-04 

.003 .Ol A3 .I .3 .s .7 
___________-___-________________________---------------------------------------- 

b.667E-01 b.&?E-01 b.bbE-01 b.WE-01 b.WEOl b.ME-01 b.&b?E-01 
2.19SE-01 2.793-01 3.479E-01 4.43lE-01 5.566E-01 6.264E-01 b.0%9E-01 
7.306E-02 1.18X-01 I.=-01 2.9X-01 4.b93E-01 S.#)lE-01 7.013E-01 
2.467E-02 5.06lE-02 9.628E-02 2.032E-01 3.999E-01 5.57aE-01 7.061E-01 
0.409E-03 2.22s02 s.wE-02 l.llOE-01 3.444E-01 s.273E-01 7.052E-01 
3.OOoE-03 l.OOOE-02 3.aoOE-02 1.OOOE-01 3.OOOE-01 5.OOaE-01 7.OOoE-01 
l.lOlE-03 4.6bZ-03 1.735E-02 7.27lE-02 2.b4zE-01 4.749+01 6.916E-01 
4.2WE-o) 2.2WE-03 1.047E-02 5.438E-02 2.3SlE-01 4.517E-01 6.8WE-01 
l.mE-04 1.204E-03 6.6b4E-03 4.19sE-02 2.112E-01 4.303E-01 6.683E-01 
8.bO6E-05 6,92lE-04 4.WE-03 3.34S-02 1.91sE-01 4.103E-01 6.546E-01 
4.74SE-05 4.4#E-04 3.25OE-03 2.742E-02 1.75OE-01 3.915E-01 6.4OlE-01 
3.04SM 3.looE-04 2.492-03 2.314E-02 1.6llE-01 3.74OE-01 6.2SlE-01 
2.22S05 2,3BlE-04 2.02OE-M 2.006E-02 1.49Z-01 3.574-01 6.097E-01 
1.7wE-05 1.95x-04 1.7Oa-a l.mE-02 1.aEE-01 3.416E-01 5.943E-01 
l.s24E-OS l.b83E-04 1.493E-03 1.593E-02 1.297E-01 3.267E-01 5.789E-01 
1.349E-05 1.495E-04 l.wE-03 1.45OE-02 l.ZlsE-01 3.12s01 5.43s01 
1.22lE-05 1.3SE-04 1.216E-03 13X-02 1.14lE-01 2.989E-01 5.48X-01 
1.12oE-05 1.244E-M l.llaE-03 l.mE-02 l.O74E-01 2.859E-01 5.33x-01 
1.03~~05 l.l52E-04 l.O36E-03 l.l47E-02 l.O12E-01 2.735E-01 5.1&E-01 
9,64!5E-04 1.072E-04 9.642E-04 1.07X-02 9.54lE-02 2.blR-01 S.WE-01 
9.oooE-06 LOWE-04 9.OOOE-04 l.oooE-02 9.OON-02 2.5CGE-01 4.9OOE-01 
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NJ\ r= 1 1.01 1.1 2 4 8 16 32 b4 128 
_________________-__- _-___-----__--__________ ,____-___-_-___---------~ mm-----m-e-m ,___----------------------------------------- 

-2 : l.OOOE+OO b. ME-01 b.bb7E-01 6. bb7E-01 6.66X-01 6. bb7E-01 b.bb7E-01 b.bb7E-01 b.WE-01 b.bb7E-01 
-1.8 : 1.OOOE*oo 8.blbE-01 7.8WE-01 7.196E-01 7.061-01 7.028E-01 7.018E-01 7.01s01 7.015E-01 7.014-01 
-1.6 : l.OOOE+OO 9.429E-01 8.708E-01 7.787E-01 7.561E-01 7.494E-a 7.4x-01 7.4ts01 7*462E-Ol 7.442E-01 
-1.4 : l.OON+OO 9.n6E-01 9.281E-01 8. WE-01 8.192E-01 8.103E-01 8.071E-01 8.058E-01 8.053-01 8.0%-01 
-1.2 : l.OOOE+OO 9.929E-01 9.69X-01 9.18lE-01 8.99OE-01 8.912E-01 8.8x-01 8.6&s-01 8.85X-01 8.85bE-01 
-1 : l.OOOE+QO 1.OooE+aI I.OOwOO 1.ooaE*oo l.oaE+oo l.ooaE+oo 1.oooE+oo 1.mmoO l.OOOE+m l.OOOE+OO 
-.8 : l.MOE+OO 1.oc4E+oo l.O24E+OO 1.09lE90 1.128E+OO 1.1ME+OO 1.1s9E.90 l.lbbE+OO l.lNE+OO 1.172E+OO 
-.b : l.OOOE+OO l.OwEMa l.MmOO 1.192mOO 1.29OE+ca 1.3SlEMO 1.392EMo 1.4lmOO 1.43bE4a l.U7E+OO 
-.4 : 1.OOCE+OO l.O07E+OO l.wE+OO l.mEMo 1.494E+o l.b3X+OO 1.738E*oo 1.817E+OO 1.877E40 1.923E+Oo 
-.2 : 1.ooma l.O09E+oo 1.07sE+00 1.429E+oQ 1.75moo 2.027Ea Z.W+OO 2.472E+OO 2.b52E400 2.809E+OO 
0 : l.OOOE+OO 1.01oE+00 1.089E+oO l.SbbE+OO 2.078E+OO 2.581EM 3.082E+oo 3.s82mo 4.082E+oO 4.58mOO 
.2 : 1.oooE+oo l.OllE+OO 1.102ENO 1.718E*oo 2.48moo 3.364EMO 4.3ChOO 5.514EMO 6.834E+OO 8.351ENO 
.4 : 1.OOOE*oo l.OlmOO l.ll(E+OO 1.886E*oo 3.007E+OO 4.473E+Oo 6.404E+OO 8.9SlEMO 1.23lEMl 1.67%+01 
.b : l.OON+OO 1.013E+00 1.12bEMO 2.071E+M 3.b%E+OO 6.051EMO 9,b73E+OO 1.516E+Ol 2.348E+Ol 3.605001 
.8 : l.OO@MO l.O14E+oO 1.13%+00 2.27moO 4.47moO 8.29moo l.49mOl 2.65x+03 4.wE9l 0.179Em 
1 : l.oooE+M l.O15E+Oo l.lsma 2.sowoo 5.s4oE+oo 1.1soE*1 2.SO001 4.75WOl 9.SOWX 1.915E92 
1.2 : l.OOOE+OO l.OlbE+OO l.lb2E+OO 2.74X+00 6.704000 l.b07E+ol 3.741E+Ol 8.b44001 l.WlE+OOZ 4.519E+O2 
1.4 : l.OOOE+OO l.O17E+OO 1.174E400 3.018Em e.s9E+ao 2.2s9E+Ol b.OME+ol 1.59OE4Q2 4.2OlE92 l.l09E+O3 
1.6 : 1.oooE+oo l.OlaE+OO l.l8bE+OO 3.315E90 l.O39E*ol 3.18mOl 9.7ObE91 2.947692 8.937E+O2 2.716+03 
1.8 : 1.oooE+oo l.O19E+OO 1.198Ea 3.642E90 1.289wl 4.513E+Ol l.S74W2 5.485E+O2 1.91OE+O3 b.b53E+Q3 
2 : l.OOM+OO 1*02oE+00 1.21oE+oo 4.OOOEm 1.bOwO1 6.4ooE+ol 2.55OE+O2 1.022+03 4.C%E93 l.b35304 

Mu\ r= -35 
_-_-------__-----____ 

-2 : L.wE-01 
-1.p: : 7.014E-01 
-1.5 : 7.45x-01 
-1.4 : E.OSlE-01 
-1.2 : 8.85x-01 
-1 : l.OOOE+OO 
-.g : 1.173E+OO 
-.5 : 1. WE+00 
-.4 : 1.957000 
-.; : 2. wE+oQ 
0 : 5.o&moo 
F. .L : 1. OOPEW 

.4 : 2.259001 

.5 : 5.521EW 

.a : 1.429Ed2 
1 : 3.mxJ2 
1.2 : 1.052E93 
1.4 : 2*mE+o3 
1.5 : 8.21SE+Q3 
1.9 : 2.31%04 
2 : b.554E94 

512 1024 2018 4096 
_--________ -----e------e -mm------mm mm-mm-----m-m 

b.bb7E-01 5.657E-01 b.bb7E-01 6. bL7E-01 
7*014E-01 7.01R-01 7*014E-01 7.014E-01 
7.4blE-01 7.45lE-01 7.46lE-01 7.451E-01 
B.O%E-01 8.051E-01 8*051E-01 8.051E-01 
8.854E-01 8.854E-01 8.WE-01 8.854E-01 
l.OOOE+OO l.OOOE+OO l.OON+OO l.OOOE+W 
1.174E+OO 1.174E+OO l.l74E+C+ l.l74E+OO 
1.45oE+oo 1.4b3E90 1.46X+00 1.457E+OO 
1.98X40 2*003E+oO 2.018EwO 2.029Eel 
3.054E+OO 3.1bWCQ 3.257E+OO 3.33&m 
5.5s2E+oo b.082Em b.!582E+OO 7.082E+OO 
1.209E+Ol 1.43wOl 1.703Em 2*005E+Ol 
3.031E+Ol 4.0!%+01 5.394Em 7.167E91 
8.418001 l.B1E+O2 1.947E+O2 2.9ssE+O2 
2.493002 4.346M2 7.571E+O2 1.319E+O3 
7. b75E42 l.s3t&+o3 3.07mO3 5.144E+o3 
2.41@&03 5*!sE4Q3 1.27mO4 2.933E+o4 
7.727E+Q3 2*039E+o4 5.382w4 1.42OE+os 
2.49OEM4 7.549E+O4 2.288mos 6.937E+O5 
8.wE+o4 2.809EMs 9.782E+os 3.4otm5 
2. b21E+O5 l.O49E+Ob 4.194E* 1.678EM7 

Iff 
m-m--------- 

5*667E-01 
7.014E-01 
7.4blE-01 
E.OSlE-01 
&mE-01 
l.oooE+oo 
1.17X+00 
1*47OE+OO 
2.05wOO 
3.&5?000 
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83(2,M,r,u) for r = .Ol 

NJ\ M= 1 2 4 8 lb 32 b4 128 256 512 1024 
--------. .--_---___________-_____________________----- -___-______________-____________________----------------------------------- 

-2 : 1.oooE+w 2.OOcmO 4.OOOoOO 8.woE+w 1.&X+01 3.2OOE91 6.4OOE+Ol 1.28WO2 Z.sboE+oz 5.12CW2 1.024E403 
-1.8 : l.OOaDw 2.214E+oO 5.842000 l.R29E+Ol b.mE*ol 2.smO2 1.17x+03 3.308E+O3 4.636w3 6.Oeow3 7.14mO3 
-1.6 : 1.OOOE*oo 2.419E90 7.39EfMO 2.638E*ol l.OlBE*o;! 4.151E+O2 1.888E*a3 5.075003 7.222E93 8.748E+Q3 9;&!E*o3 
-1.4 : 1.OOCE+oo 2.617EMO 8.745000 3.29X+01 1.30%*02 5.358002 2.34Z93 5.9&4E+O3 8.26X+03 9.70X*03 1.06X*04 
-1.2 : 1.OOOE+W 2.8llE90 9.937E+M 3.843001 1.534BO2 6.24X92 2.S95003 b.253E+O3 8.449DO3 9.671E+O3 1.034EtCN 
-1 : l.OOM90 3.Om90 1.1OOE+o1 4.3ooEMl l.tlOEE*o2 6.63C4M2 2.674003 b.094003 8.047E+O3 9.021403 9.512E*Q3 
-.8 : 1.OOOE+oo 3.18ODOO l.l91E+Ol 4.651E+Ol l.S23E+O2 7.065E92 2.58%93 5.578E+O3 t-=+03 7.950003 8.2806+03 
-.b : l.mOE~ 3.337E+OO 1.25mOl 4.848Em 1.851EM2 6.877E92 2.342W3 4.m+O3 6.04SW3 6.57E+O3 6.791E93 
-.4 : 1.wOE+oO 3.444E+OO 1.28wol 4.81mOl 1.76&02 6.215E+O2 1.957EM3 3.7X+03. 4.686E+@3 5.041E93 5.171E+O3 
-.? : l.OMc90 3.4awO 1.252001 4.48OE+Ol l.WE+OZ 5.131EM2 1.48hE93 2.712E+O3 3.304E+O3 3.521E+O3 3.594EM3 
0 : l.OOOE90 3.3686+00 l.lSlE+Ol 3.84&01 1.253E+O2 3.826002 l.Ol!BO3 1.7X%+03 2.W7E+O3 2.216E+O3 2.X+03 

.2 : 1.OOwOO 3.163E+oo 9.992E+OO 3.090001 9.21291 2.57#+02 6.2XWO2 1.021E93 1.2W+O3 1.2SR+O3 1.277E93 

.4 : l.OON+OO 2.883E*oo 8.251E+OO 2.314E+ol b.2&&01 l.S95E+O2 3.521E+O2 5.442E+O2 6.2806~2 6.549002 b.b27E92 
.b : 1.oooE+OO 2.57%+00 6.575000 1.6!51E+Ol 4.018E401 9.22@E+Ol 1.851E+02 2.709E+O2 3.071E+O2 3.183EM2 3.21!iE+O2 
.8 : l.OOOE+OO 2.27OE+OO 5.123E+CO l.lllE+Ol 2.475EE*ol 5.098E+Ol 9.28OEtOl 1.285002 1.431EM2 1.47hE92 1.48WO2 
1 : 1.oooE+oo 1.989E+oo 3.94OEMO 7.728000 1.4&E+Ol 2,73lE+Ol 4.505001 5.90891 6.444E+Ol 6.629001 6.673E91 
1.2 : 1.OOcE+oO 1.737E90 3.mE+OO 5.177wo 8.77SE+OO 1.43SE+Ol 2.142E+Ol 2.660001 2.8%*01 2.917E41 2.933E+Ol 
1.4 : 1.OOcEm 1.514E+Oo 2.289eOO 3.44&00 5.13X+00 7.44OE+OO l.OOSE+Ol l.l82f+Ol 1.248E+Ol 1.267E+Ol 1.272001 
1.6 : l.mE+oo 1.315wO 1.738EMO 2.28sEtOo 2,98X+00 3.82WOO 4.678000 5.211ENQ 5.40%00 5.45#+00 5.472+00 
1.8 : 1.oooEm 1.149EaO 1.319Ea 1.51wOO 1.729EMO 1.9KmOO 2.1MDOO 2.28mOO 2.328000 2.34OE+oO 2.34J+OO 
2 : 1.oOoE+oO 1.oOM+OO 1.oOceOo l.OOoE+oO 1.OOmoo l.OOOE+Oo l.OOOE+OO l.OOOE+oO 1.O@x+Oo l.OOoE90 1.OOoE+oO 

Mu\ M= 1 2 4 8 16 32 64 128 256 512 1024 
___--_---. .--------_-_____________________________------------------------------------------------------------------------------- 

-2 : l.OOOE+tM 2.OOOE+oo 4.OOOE+oo 8.OOOE+OO 1.6OOE+Ol 3.21%X+01 6.4OOE+Ol 1.2BC002 2.5&X+02 5.12@+02 l.O24E+O3 
-1.8 : l.OON+OO 2.?l&E+OO 5.8fkE+OO 1.865001 7.138E+Ol 2.812E+O2 4.880002 6,534E+O2 8.075002 9.647E+O? l.l43E+O3 
-1.6 : l.OON+o(~ ?.422E+OO 7.449000 2.7C5E+Ol l.l15t+02 4.279002 7.155002 9.17642 1.063X3 1.18OE93 1.274E+O3 
-1.4 : l.OOOE+C’O 2.623E+OO 8.817EMO 3.37%+01 1.411E+02 5.07292 8.28%+02 1.02X+03 l.l47E+O3 1.229E+O3 1.283E+O3 
-1.2 : 1.oooc’+crj ?.916E+OO l.CmX+Ol 3.91oE+Ol 1.407E+O2 5.%&02 8.54@92 l.O27E+O3 1.12%+03 l.l8OE+O3 1.212E+O3 
-1 : l.OOOE+OO 3.@OE+OO 1.1OOE+Ol 4.3OOE+ol 1.71OE+O2 5.328&02 8.221E+O2 9.667E+Q2 1.0X+03 1.07X+03 l.W?003 
-.8 : 1.06OEMO 3.164E+OO 1.175001 4.523ENl 1.719E+O2 4.971E+O2 7.45X+02 8.6ObE+O2 9.12X+02 9.35OE+O2 9.451E+O2 
-.6 : l.OON+OO 3.29OE+OO 1.217E41 4.543E+Ol l.b32E+O2 4.374E42 6.378E92 7.247E+O2 7.bOOE92 7.74&+02 7.794E+O2 
-.4 : l.O6OE+OO 3,?56E+OO 1.21X+01 4,33lE+Ol 1.455&02 3.61692 5.12&?02 5.743E92 5.974002 t..OVE+O2 6.086E42 
-.2 : l.OON+OO 3.339E+OO 1.151EMl 3.89&01 1.214E402 2.797E92 3.851EM2 4.262EM2 4.405E+O2 4.452002 4.46&X2 
0 : l.O@X+oo 3.229E+OO 1.052X+01 3.29EE+Ol 9.462E91 2.019UO2 2.70X42 2.957E+O2 3.04oE+O2 3.0&X)2 3.074E92 

.2 : l.OWE+M 3.03tHM 9.14&00 2.63SE+Ol 6.912E+Ol 1.364E92 1.77&02 1.924E+O2 1.976+02 1.983E92 1.987E+O2 
.4 : l.WCWOO 2.787E90 7.64OWO 2.002E+Ol 4.774E+Ol 8.737EW l.i04E+O2 1.184W2 1.209DO2 l.ZlSE+OZ 1.217EM2 
.6 : 1.OOOE+oo 2.51OE+OO 6.186E+OO 1.46lE+Ol 3.153E401 S.345E91 6.564001 6.97!BOl 7.095E+Ol 7.1280Ql 7.13&*01 
.8 : 1.cowoo 2.23mOa 4.89mOO l.O35E+a 2.013+01 3.162E+ol 3.772E+Ol 3.973E+Ol 4.03owl 4.04wOl 4.wE91 
1 : l.OOOE+OO 1.967E+OO 3.818*00 7.179EMO 1.254E+Ol 1.826E91 2.llbE91 2.21OE41 2.236E+Ol 2.242E+Ol 2.244E91 
1.2 : l.OOOE+OO 1.72SE+OO 2.946E+OO 4.907E+OO 7.488#L+oo l.O37E+Ol l.lME91 1.209E41 1.22OE41 1.22X+01 1.22691 
1.4 : l.OOCE+OO 1.508EtOO 2.259EMO 3.322E+OO 4.659E+OO 5.829E+@I 6.371E+OO 6.538+00 6.58XNO 6.5950CQ 6.598Em 
1.6 : l.WXMO 1.31WOO 1.72!WOO 2.234E+OO 2.WlE+M 3.251E+OO 3.45OEMO 3.511EW~ 3.527E+OO 3.§31E+OO 3.532EMO 
1.8 : l.OON+OO 1.14WOO 1.314E+OO 1.497E4-00 1.676EMO 1.805Ea 1.8KUOO 1.87&00 1.881E90 l.&32E+OO l.@2E40 
2 : 1.OOOE+oo l.Oce90 l.OO@E+OG l.Ocmca l.aaE+OO l.OOOE+OO 1.oooE+OO l.Ocmal 1.OOoE+oO 1.ocmOO 1.oOmOO 

83(2,M,r,rr) for r = .03 

31 

TN-326 



B3(2,H,r,ut) fw r = .I 

1 2 4 8 16 32 64 128 256 512 
---------___-_-----------------------------------------------------------------------------------------------. 

l.OOoE+oo 2.O@lE+uI 4.mE*do B.OOcE+a l.6oOE+ol 3.2OOE+ol 6.4OOEMl 1.2x002 2.56OEM2 5.12aO2 
l.OOOE+OO 2.229E+OO 6.118E+OO 2.327E+Ol 4.419E401 5.757EMl 6.87lE+Ol 7.WlE+Ol 8.66WOl 9.39391 
1.OOOE+OO 2.448E90 7.866&M 3.13%+01 b.OVE+Ol 7.934EW 9.267E+Ol 1.026W2 l.lOlE+O2 l.lsBEM2 
l.OO0E+OO 2.654E+OO 9.27C000 3.626E+Ol 6.919EMl 8.832E*ol l.O05E+O2 l.O84E+O2 1.136E92 l.l7OE+O2 
l.MWOO 2.842f+OO 1.032EMl 3.853E+Ol 7.133E+Ol 8,9llE+01 9.909E91 l.O48E+O2 l.O8OE+O2 l.O99E+O2 
l.OOOE+OO 3.OOOE+OO l.lOOE+Ol 3.863E+Ol 6,9ME+Ol 8.45X+01 P.P7E*ol 9.613EMl 9.807E+Ol 9.90291 
l.OOOE90 3.117E+OO l.l27E+Ol 3.694EtOl 6.365EtOl 7.64S4Ql 8.222i+Ol 8.478E91 8.59lE+Ol 8.64W-01 
l.OME+OO 3.18CE+00 1.114001 3.385E91 5.617E+Ol 6.Gf+Ol 7.04%01 7.215E+Ol 7.28OE+Ol 7.305E91 
l.WCE+OO 3.179E+OO l.O6lE+Ol 2.98lE+Ol 4.76OEMl 5.53ZMl 5.82X+01 5.93lE+Ol 5.9~91 5.98lEMl 
l.MKWOO 3.lllE+OO 9.757EMO 2.528E+ol 3.@4E+Ql 4.447E91 4.647E*ol 4.714E91 4.735EW 4.74291 
l.OOOE90 2.98OE90 8.68X+00 2.069001 3.059EMl 3.4!i?&Ol 3.587EM 3.6X91 3.64lE+Ol 3.M5E+Ol 
l.OOWOO 2.79X+00 7.50X+00 1.642E+Ol 2.33%*01 2.603E4l 2.689E+Ol 2.714E+Ol 2.72lEW 2.723E+Ol 
l.@OE+OO 2.584E+OO 6.317E+OO 1.26#+01 1.73CEMl l.9lOEMl 1.964E+Ol 1.979E+Ol 1.984E91 1.985E+Ol 
l.OOWOO 2.352E+OO 5.208EMO 9.591EMO 1.262E+Ol 1.372E+01 1.405E91 1.414Wl 1.416E+Ol 1.417E91 
l.OOOE*a, 2.116E+00 4.ZlEMO 7.125WO 9.OlZf+OO 9.6%X90 9.878EMO 9.93lE+OO 9.944E+OO 9.948E90 
l.OOOE90 l.WE+oo 3.377EMO 5.223000 6.354E+OO 6.745E+QO 6.857E+OO 6.886000 6.894000 6.896EMO 
l.OON+OO 1.67%+00 2.676EW 3.79lE*00 4.43!fE96 4.652000 4.714EW 4.73OE+OO 4.734E90 4.735E+OO 
l.ONDOO 1.477E+OO 2.105E+oo 2.732E+OO 3.074E+OO 3.187E+OO 3.218EMO 3.226ENQ 3.228E+OO 3.228E+OO 
1.OOWOO 1.299t90 1.647E+OO 1.96OE40 2.12OEMO 2.172E+OO 2.18&00 2.189E90 2.19OE90 2.19lE40 
l.OOOE+OO l.l4lE+OO 1.28%+00 1.4OlE+OO 1.457E+OO 1.475E90 1.48WOO 1.48lE+OO 1.48lE+C’l 1.482E+OO 
l.OoN+oo l.OwE+w l.OOOE+oO 1.caEm l.@xmoo l.oooE+Oo l.OOOE*oo l.OOcc+al 1.OOmOO l.mE+oo 

ICI\ ?b 
--------- 
-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.a : 
-.6 : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.6 : 
.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

hi\ H= 
__-_-----. 

-2 : 
-1.8 : 
-1.4 : 
-1.4 : 
-1.2 : 
-1 : 
-.s : 

6 : 
::4 : 
-.2 : 
0 : 

.2 : 

.4 : 

.6 : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

B3(2,H,r,u) fm P = .3 

1 2 4 8 16 
.------------------_----------------------------------- 

l.OOoE+OO 2.OOOE+oO 4.mmOO 8.oOoEMO l.6OcEMl 
l.OOOE+OO 2.388X0 5.582E*oo 9.024000 1.341E+Ol 
l.OOOE+OO 2.669E+OO 6.503E+OO ?.614E+OO 1.237E+Ol 
l.OOOE+G’D 2.857E+OO 6.937E+OO 9.77OEMO l.l71E+Ol 
l.OOOE+OO 2.964E+OO 7.013EWJ ?.562E+OO 1.102E41 
l.OOOE40 3.OOOE*oo 6.833E+OO 9.0&X+00 l.OZlE*Ol 
1.OOOE+oo 2.976E4QO 6.4T7E+OO 8.4~Z0tM 9.3&X+00 
l.OOOE+OO 2.902E+OO 6.WWOO 7.655E+OO 8.T39E+W 
l.OOM+C@ 2.769EMO 5.478EtOO 6.844&M 7.374000 
l.WOE+OO 2.648E+OO 4.92S~ 6.03WOO 6.44X*00 
l.‘MOE+OO 2.487E40 4.374+00 5.264E+OO 5.573E+OO 
l.OOOE+OO 2.316EMO 3.85OWO 4.548DOO 4.78lE400 
l.woE+oo 2.14oEm 3.362E+oo 3.90@*00 4.073E+OO 
l.OOOE9o 1.967E*oo 2.919000 3.324E+OO 3.45W-00 
1.OOOE+00 1.799EMO 2.5Zi!E+OO 2.82OE+OO 2.9lWOO 
l.OOOE+O0 1.639E+OO 2.17lE+OO 2.38X90 2.44WOO 
l.OOUX@ 1.489GOO 1.864E+OO 2.009E+OO 2.051E+OO 
l.OCOE@O 1.35OE90 1.597E90 l.69N+oo 1.71WOO 
l.OOoE+w 1*223E+OO 1.367E+OO 1.42oE+OO 1.434E+a 
l.OOOE+OO l.l06E+OO l.l69E+OO l.l92f+OO l.lW+OO 
l.Oca+Oo l.OoOEMO l.OOOE+Ml l.OcaE+oO l.OOOE90 

32 64 128 256 512 
-_-_---------------_----------------------------------- 

3.2OWOl 6.4OOE+Ol 1.28OEM2 2.5&X+02 5.12OE+O2 
1*98cE+01 2.987E91 4.649Ew 7*464E+Ol 1.23OE402 
l.S21E+Ol I.854001 2.285bOl 2.S?E+Ol 3.746E+Ol 
1.317E+Ol 1.44OE+Ol 1.557E+Ol 1.681E+Ol 1.825E+Ol 
l.lS+ol 1.242E*Ol 1.278001 I.305001 1.328E+Ol 
1.077E+01 l.lO5E+ol l.l19E+ol l.l26E+Ol 1.13wol 
9.686E+oo 9.85OE+OO 9.9lmOO 9.944E+oO 9.952EwJ 
8.6lOE+OO 8.7KW-00 8.7XHO 8.76X+00 8.766E+OO 
7.56tmo 7.63x40 7.65!mOQ 7.662E+OO 7.664E+QQ 
6.58OE+OO 6.624&W 6.6X90 6.642EMO 6.643E+OQ 
5.67lE90 5.70lE+OO 5.709EtOO 5.712E90 5.712000 
4.&%E+OO 4.871E+OO 4.876EW 4.87690 4.878E90 
4.12X+00 4.137E90 4.14OE+OO 4.14lE*00 4.14lE+OO 
3.486E+OO 3.49mQO 3.49Eam 3.49mOO 3.499E+QO 
2.93S90 2.942EMO 2.943E90 2.944E+OO 2.944E+OO 
2.463EMO 2.46aEa 2.469mQO 2.469E90 2.469E+OO 
2.062f+OO 2.065E90 2.066E+Oo 2.amoo 2.OhE90 
1.72x+00 1.72wOO 1.726EMO 1.726E+OO 1.72taoo 
1.43aE+Oo 1.439E+oO 1.44OE+OO 1.44OE+oO 1.44&+00 
1.2OOE+OO 1.2owOO l.2ooE+cQ 1*2OOE+OO 1.2OOEMO 
l.OOcmOo l.OwE+OO l.OOOE+oO l.OOOE+OO l.Omx9o 

1024 
.-e--e---e 

l.O24E+O3 
1.003E402 
1.2OlE+O2 
1. mm02 
1.109E42 
9.952E+Ol 
8. Km01 
7.31491 
5.985E*ol 
4.744Eao1 
3.646E+Ol 
2.724Em 
1.985E41 
1.417E+Ol 
9.949E+oo 
6.896000 
4.735Em 
3.229Em 
2.19lE+OO 
1.482E60 
l.OWE+oo 

1024 
_-----_-- 

l.O24E+O3 
2.065E402 
5.023E+Ol 
2.002E+ol 
1.34WOl 
1.132001 
9.95x+00 
8.766E+oo 
7.t.txm 
6.64J90 
5.713E+oo 
4*879E+OO 
4.142E90 
3*499E+OO 
2.944E+oo 
2.469E+oo 
2.06waI 
1.72moo 
1.44WOO 
1.2OOEMO 
l.OCGE90 
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R3(2,ll,r,u) for r = 1 

rhl\H= 1 2 4 8 16 32 64 128 256 512 1024 
------___---_--_____------------------------------------------------------------------------------------------------------------ 

-2 : 1.OoOE*00 l.OOOE~ l.ooOE+OO l.OOoE+oO l.OomOO l.omE+OO l.OocmO l.coaE90 l.Oux+w l.OOmoO l.OoOE+oO 
-1.8 : l.caOE90 l.oOcwO l.OOOE+oO l.mBOO l.amoO l.OoOE+oO l.OooEMO l.OOwOO l.oomoO l.moPoO l.oamoO 
-1.6 : l.oowoO l.OoOE+OO 
-1.4 : l.OoOE+oO l.OooE+oO 
-1.2 : l.ooOE+OO l.OoOmO 
-1 : !.oomoo !.oomoo 
-.8 : l.OoOE+oO l.OoaE+oo 
-.b : l.OomoO l.OOowO 
-.4 : l.oooE*oo l.oooE9o 
-.2 : 
0 : 

.2 : 

.4 : 

.b : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

hi\ H= 
------m-m 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.8 : 
-.b : 
-.4 : 
-.? : 
0 : 

.2 : 

.4 : 

.b : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 

2 : 

l.OOOE+ca l.OmeOO 
l.OooE+oO l.OooE40 
l.OoOE+oO l.OOoE+OO 
l.comoO l.OooE+w 
l.OoOE40 l.OOmaI 
l.caE90 l.OooE+oO 
l.mE40 l.OKmo 
l.oOawO l.owMO 
l.OooE+a l.OOmoo 
l.cowoO l.OOoE+oO 
l.OoOE+oO l.OOoE+Oo 
l.OooE+M l.OOOE+oo 

83(2,M,r,md for r = 1.01 

1 L 

_-_______--_____--__-. 

l.mE+oO 2.oOoE+oo 
1.oooE+w l.xJoE+Oo 
1.oowoo 1.1o5E+ca 
1.cmEm 1.037E90 
l.cKxmoO 1*011E+00 
l.a+f% l.&%+w 

1.oOOE+Oo 9.?%E-01 
l.oooE+oc 9.938E-01 
1. CooEm 9.932E-01 
l.OOOEm ?.931E-01 
!.oocE+oo 9.934E-01 
l.oocc+cK~ 9.93BE-01 
1.oooE+oo 9.944E-01 
1.OmE+oo 9.9x%-01 
l.cooE+OO 9.Q5b.E-01 
l.ooma 9*9bx-01 
1. cacooo 9.9x-01 
l.OomoO 9.978E-01 
l.OOoE+oO 9.5mE-01 
l.Ocm9O 9.99x-01 
l.oOawQ 1.cQOE+Oo 

4 8 lb 32 64 128 256 
.---_____--____---______________________-------------------------------------. 

4.OOOE+oo 8.OOODOO l.WE+Ol 3.2OOE+Ol 6.400001 1.28@+02 2.5bOE+O? 
1.77lE+C@ Z.S45E+OO 3.8S2E40 b.WDC@ 9.9t%E+W l.UE+Ol 2.83&*01 
1.234E+oo 1.407E+oo l.b!sOE+oO 2.004E+oO 2.532E+oo 3.324E+Oo 4.516400 
1.07WOO l.llOE+OO l.lSSW’O 1.205000 1.278ENO 1.3b7E+OO 1.484000 
1.019E+00 1.02bEm 1*032E+00 !.039E+oO l.O4bEwo l.O54E+oa l.ob3E+Oo 
1.oOoE+Oo l.moE+Oo l.oOOE+oo l.OooE+oO l.Ooooo9 l.OomOo l.oooE+oO 
9.933E-01 9.92lE-01 ?.913E-01 ?.908E-01 9.90%-01 9.9’02E-01 9.899E-01 
9.9loE-01 9.89Ee01 9.892E-01 9.w%-01 9.887E-01 9.88&z-01 9.885E-01 
?.9OZ-01 9.89X-01 9.89lE-01 9.W9E-01 9.868E-01 9.88@-01 9.887E-01 
9*907E-01 9.899E-01 9.8%E-01 9.8%-01 9.89%-01 9.894E-01 9.894E-01 
9.91x-01 9.9obE-01 9.904E-01 9.90x-01 9.303-01 9.90x-01 9.90X-01 
9.92oE-01 9.914E-01 9.9lJ-01 9.912E-01 9.912E-01 9.912?+01 9.912E-01 
9.928e01 9. m-01 9.92x-01 9.922E-01 9.Qi%E-01 9.922E-01 9.922E-01 
9.93bE-01 9.932E-01 9.932E-01 9.93lE-01 9.93lE-01 9.93lE-01 9.931E-01 
9.94SE-01 9.94X-01 9.94lE-01 9.94lE-01 9.941E-01 9.94lE-01 9.94lE-01 
9.9X-01 9.952E-01 9.%lE-01 9.%lE-01 9.%lE-01 9.95lE-01 9.%lE-01 
9,9b3E-01 9.9blE-01 9,9blE.-01 9.9blE-01 9.9blE-01 9.9blE-01 9.9blE-01 
9.97Z-01 9.97lE-01 9.97OE-01 9.97OE-01 9.97CG01 9.97OE-01 9.97OE-01 
9.98lE-01 9.%lE-01 9.96OE-01 9.9&C01 9.99OE-01 9.98OE-01 9.98X-01 
9.P9lE-01 9.99'S01 9.WCC-01 9.99X-01 9.99OE-01 9.99OE-01 9.99OE-01 
l.fmEfoO 1.OomOo l.OOoE*a, 1.ORxm l.OOcc+w l.OomOO l.OoOE+Oo 

512 1024 
._----___----_-----_- 

5.12oE+O2 1.024E+o3 
4. &7E+Ol 8.4OlE91 
6.324000 9.057E90 
1.b37Em 1.83eoO 
1.07J90 1.084E*oo 
l.ooOE+oO l.OooE+oo 
9*897E-01 9.896E-01 
9.8B)E-01 9.WE-01 
9.wE-01 9*887E-01 
9.894E-01 9.894E-01 
9.mE-01 9*90x-01 
9.912E-01 9.912E-01 
9.92x-01 9. m-01 
9.93lE-01 9.93lE-01 
9.94lE-01 9.941E-01 
P.%lE-01 9.%lE-01 
9.9blE-01 9.9blE-01 
9.9706-01 9.97oE-01 
9*98oE-01 9.98oE-01 
9.m-01 9.99oE-01 
1.OoOEm l.OooE+Oo 

33 

TN-328 



BJ(Z,R,r,u) ffr r = 1.1 

lb\ k 1 2 4 8 lb 32 64 128 2% 512 1024 
~~~~--~~~ ,___-________-______-------------. .___-__-____--_---__------------------------------------------------------------------- 
-2 : 1.woE+oo 2.OOOE+Oo 4.OOOE+Oo 8.OOCCMO 1.bOOE*o1 3.zooE+Ol b.IooE+Ol 1.28@+02 2.56WO2 5.12C002 1.022+03 
-1.8 : l.OoOwO 1.494000 2.2&000 3.601E*oo 5.&(5Etoo 9.7ooE+00 l.b37E*o1 2.795Em 4.8Om01 8.31lE+Ol 1.441E92 
-1.6 : 1.mwoO 1.25oE+oO l.mE+oO 2.017EtOO 2.657E+OO 3,6OlE+OO 5.011E90 7.134E+OO 1.034E91 1.519001 2.254E+Ol 
-1.4 : 1.oooE+OO l.l19E+OO 1.243000 1.385000 l.SbE90 1.772EMO 2.05OE+OO 2.412E+oo 2.6VE+OO 3.512E+OO 4.33%+00 
-1.2 : 1.ooOE+oO 1.044000 1.082EMO 1.117EMO 1.153E+OO 1.191E+OO 1.234E+OO 1.282fMO 1.3X000 1.39%90 1.470000 
-1 : 1.OooE+oO 1.oooE+oO 1.oooE+OO 1.oOoE+oO 1.oooE+oo 1.OooE+oo 1.oooE+oO 1.oOoE*oo 1.ooOE+oO l.oooE90 1.oooE+oo 
-.8 : 1.mE+oo 9.74OE-01 9.wE-01 9.484E-01 9.414E-01 9.361E-01 9.316E-01 9.282E-01 9,25lE-01 9.225E-01 9.202E-01 
-.b : 1.oooE+oO 9.59oE-01 9.3m-01 9.268E-01 9.2OzE-01 9. MOE-01 9.132E-01 O.lllE-01 9.096E-01 9.085E-01 9.077E-01 
-.I : l.woE+c@ 9.!iloE-01 9.292E-01 9.19x-01 9.145E-01 9.119e01 9.lowol 9.09bE-01 9.09aE-01 9.087E-01 9.085E-01 
-.2 : l.CCQE+@ 9.47&-01 9.27OE-01 9.189E-01 9.15@-01 9.142E-01 9.139E-01 9.131E-01 9.129E-01 9.128E-01 9.128E-01 
0 : 1.OoOE+oO 9*472f-01 9.287E-01 9.223E-01 9.2ME-01 9.192E-01 9.189E-01 9.187E-01 9.187E-01 9.18&E-01 9.18bE-01 
.2 : 1.fxMmoO 9.49ce01 9.327E-01 9.277E-01 9.2blE-01 9.25bE-01 9.2X-01 9.254E-01 9.25X-01 9.253E-01 9.253E-01 
.I : l.@IOE+OO 9.523E-ql 9.382E-01 9.342E-01 9.331E-01 9.327E-01 9.32bE-01 9.32bE-01 9.32bE-01 9.32bE-01 9.32bE-01 
.b : 1.OOOE90 9.5bbE-01 9.447E-01 9,41f-01 9.4obE-01 9.404E-01 9.40x-01 9.403E-01 9.40x-01 9.403E-01 9.40x-01 
.8 : 1.OOOEMO 9.617E-01 9.517E-01 9.492E-01 9.48501 9.4&x-01 9.48x-01 9.483E-01 9.4wE-01 9.4&x-01 9.48x-01 
1 : l.OOOE+OO 9.674E-01 9.59S01 9.s72E-01 9.wE-01 9.5&E-01 9.ssE-01 9.%sE-01 9.56x-01 9.!ME-01 9.5bsE-01 
1.2 : l.OOOE+UI 9.73X-01 9.67OE-01 9.65X-01 9.651E-01 9.65OE-01 9.64X-01 9.b49E-01 9.&4X-01 9.64e:-C. Q.b49E-01 
1.1 : l.CnXDOO 9.798E-01 9.751E-01 Q.739E-01 9.73&z-01 9.73x-01 9.73s01 9.735E-01 9.73%01 0, >Fc+?l 9.73s-01 
l.b : 1.oOoE*OO 9.8b4E-01 9.mE-01 9.82X-01 9.8236-01 9.@2E-01 9.i!lE-01 9.82X-01 9.82Z-01 9.822E-01 9.822E-01 
1.8 : l.OOOE+OO 9.93lE-01 9.91&T-01 9.912E-01 Co :lE-01 9,91lE-01 P.PllE-01 P.PllE-01 P.PllE-01 9.911E-01 9.91lE-01 
2 . 1, OooE~ 1. WJEtoo 1, &xE- + 1.oooE+m 1.ooaTm 1.oooE90 1.OooE+oO 1.ooOE*oo l.OooE+oO 1.OoOE+oO 1.ooOE+oO 

“,- , b 

---------. 

-2 : 

-1.8 : 

-1.6 : 
-1.4 : 
-1.2 : 
-1 : 

8 : 
::b : 
-.4 : 

-.? : 

0 : 

.2 : 

.4 : 

.b : 

.8 : 

1 : 

1.2 : 

1.4 : 

1.6 : 
1.8 : 

2 : 

83(2,M,r,ru) for r = 2 

1 2 4 8 lb 32 64 128 256 512 1024 
.___________--_-_-______________________--------------. ,_________----__-_-_____________________------------------------- 

I.OOOE+OO 2.WOE+OO 4.OOOE+OO 8.OOWOO l.bCG+Ol 3.2OOE+Ol 6.4OOE91 1.28OE+O2 2.5bOE92 5.12M+O2 1.024+03 
l.OOOE+OO l.b9OE+OO 2.8b2E+OO 4.877E+OO 8.3b2ENO l.UlE+Ol 2.491E+Ol 4.319E+Ol 7.5O'.WOl l.WE4Q2 2.267E92 
1.oOOE+oo 1.44wOO ?.o89E+00 3.037E+oo 4.45x+00 6.5EWO 9.79EMO 1.4&&+01 2.203001 3.31991 5.01OE91 
1.OOOE*oo 1.255E+OO 1.5bS+OO 1.964ENO 2.472+00 3.137E+OO 4.OOWOO 5.15WOO b.b!VE+‘JO 8.b4WQO 1.12&W 
l.ONE+OO l.l09E+OO l.ZBE+OO 1.347E+OO 1.484E+OO 1.63%+00 1.81X+00 2.014E+OO 2.244E+OO 2.507E+OO 2.81oE+OO 
1.OOOE+OO 1.Oc@E+oo l.mE+oo 1.oooE+oO 1.OOoE60 l.OOoE+OO 1.OowoO 1.o@moo l.oOOE40 l.OooE90 l.OomoO 
1.WOE+OO ?.19S-01 8.591E-01 8.113E-01 7.72X-01 7.395E-01 7.115E-01 6.873E-01 b.bb&01 6.483E-01 6.325E-01 
1.OK0OO 8.b32E-01 7.74&E-01 7.151E-01 6.7X501 6.435E-01 6.21X-01 b.O47E-01 5.922G01 5.828E-01 5.757E-01 
l.OOOE+OO 8.25JE-01 7.2WE-01 6.727E-01 b.394E-01 6. ME-01 b.NPE-01 5.972E-01 5.917E-01 5. WlE-01 5.857E-01 
l.O@E+OO 8.028E-01 7.08OE-01 6.614-01 6.377E-01 6.251E-01 6.183E-01 b.l44E-01 b.l2r-01 b.ll%-01 6.103-01 
l.OOOE+CQ 7.922E-01 7.052E-01 b.bME-01 6.52X-01 6.451E-01 6.417E-01 6.4OlE-01 6.39X-01 6.38X-01 6.387E-01 
l.OOOE+OO 7.912E-01 7.14J-01 6.8bOE-01 6.7X-01 6.713-01 6.69X-01 b.b9@-01 b.b87E-01 b.b8bE-01 b.b8bE-01 
1.OOOE+OO 7.979E-01 7.316E-01 7.10lE-01 7.03lE-01 7.OMG01 7.OOOE-01 b.W7E-01 b.WbE-01 6. WbE-01 6. WbE-01 
l.OOCMO 8.1&E-01 7.547E-01 7.381E-01 7.J37E-01 7.32x-01 7.319E-01 7.316-01 7.318E-01 7.318E-01 7.318E-01 
l.OM000 8.28X-01 7,82OE-01 7.69bE01 7.664E-01 7.&s%-01 7.bvE-01 7.b52E-01 7.uzT-01 7.b!z-01 7.652i-01 
l.OOOE+OO 8.5WE-01 8.1H-01 8.031E-01 8.W8E-01 8.002E-01 8.OOOE-01 8.OOOE-01 8,OOW01 8.OOOG01 8.CQOE-01 
l.OOOE+OO 8.BOE-01 8.45&-01 8.3&E-01 8.#9E-01 8.36501 8.364E-01 8.364E-01 8.36X-01 8.3Gf-01 8.36X-01 
l.oooE+~XI 9.029E-01 8.811E-01 8.76OE-01 8.747E-01 8.74501 8.744E-01 8.744E-01 8.744E-01 8.744E-01 8.744E-01 
1.OOfX+OO 9.331E-01 9.186E-01 9.15X-01 9.145E-01 9.14J-01 9.142E-01 9.14zE-01 9.14x-01 9.142E-01 9.142-01 
1.OooE+oO 9.b5bE-01 9.582E-01 9.5bbE-01 9.5b2E-01 9.561E-01 9.56OE-01 9.56OE-01 9.56OE-01 9.SME-01 9.56OE-01 
1.oooE+oo 1.oOOE+oo 1.OooE+oo l.moE+oO 1.oooE*oo l.oomm 1.OoOE+oo l.OoOE90 l.Om+aJ 1.mE+oO 1.OooE+oO 
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83(2,Il,r,u) fw r = 4 

1 2 4 8 16 32 64 128 256 512 1024 
.-__------------__----------------------------------------------------------------------------------------------------- 

l.OOOE+OO 2.OOOwO 4.OOOE+OO 8.00@90 l.6OOE*ol 3.2OOE91 6.4wE*l 1.2moO2 2.540692 5.12mO2 l.O24E+O3 
l.WOE+OO 1.728E+OO 2.986WO 5.17OMO 8.964E90 1.556EOl 2.705POl 4.704E+Oi 8.18X+01 1.4X+02 2.48WO2 
1.OOOWO 1.494ENO 2.23X+00 3.341EMO 5.014WO 7.WE90 1.137E91 1.718E+Ol 2.597E+Ol 3.925E91 5.94%+01 
1.OME*oo 1.296E*oo 1.67tE+OO 2.174E+oo 2,@3EMO 3.676@00 4.799WO 6.279E*oo 8.232E+OO l.OBlE+Ol 1.42OE+Ol 
l.OOOE+OO 1.132E+oo 1.2X+00 1.444E90 1.631E90 1.844E+OO 2.-90 2.367E+OO 2.68%90 3.057E+OO 3.48OE+OO 
l.OOOE+OO l.Om+OO l.OOOE*oo l.OOOE90 l.mOEW l.OwE+oO l.OOOEaO 1.OOwOO l.OOOE+OO 1.OOwOO 1.OOwOO 
l.OOM+oo 8.967E-01 8.123E-01 7.42OE-01 6.824E-01 6.313E-01 5.87X-01 5.489E-01 5.157E-01 4.868E-01 4.61&E-01 
l.OLW90 8.19BE-01 6.934E-01 6.@lE-01 5.37OE-01 4.88OE-01 4.513E-01 4.237E-01 4.028E-01 3.87OE-01 3.75OE-01 
l.WOE+OO 7.b6X-01 6.25&01 5.392E-01 4.849E-01 4.502E-01 4.276-01 4.128E-01 4.032E-01 3.968E-01 3.92bE-01 
l.OOOE90 7.3X-01 5.94&T-01 5.217E-01 4.WE-01 4.6NE-01 4.4&E-01 4.417E-01 4.378E-01 4.35X-01 4.342E-01 
l.oooE+C@ 7.167E-01 5.89%-01 5.323E-01 5.057E-01 4.Q32E-01 4.871E-01 4.841E-01 4.826&01 4.819E-01 4.815E-01 
l.OOCC90 7.144E-01 b.O3CE-01 5.595E-01 5.422E-01 5.351E-01 5.32Z-01 5.31OE-01 5.3X-01 5.303E-01 5.302E-01 
l.OOOE90 7.232E-01 6.285E-01 5.962E-01 5.851E-01 5.812E-01 5.798E-01 5.794E-01 5.792E-01 5.791E-01 5.791E-01 
l.OOOE+OO 7.409+01 6.621E-01 6.384E-01 6.312E-01 6.291E-01 6.284E-01 6.282E-01 6.281E-01 6.281E-01 6.281E-01 
l.OOE+OO 7.654E-01 7.013E-01 6.83X-01 6.792E-01 6.77%-01 6.T15E-01 6.775E-01 6.774E-01 6.7X-01 6.TI4E-01 
l.OOOE+OO 7.955E-01 7.44J-01 7.315E-01 7.283E-01 7.27X-01 7.27X-01 7.272-01 7.27X-01 7.273E-01 7.273E-01 
l.OOOE+OO 8.298E-01 7.903E-01 7.81OE-01 7.7ES-01 7.782G01 7.781E-01 7.781E-01 7.781E-01 7.781E-01 7.781E-01 
l.OOOE+OO 8.679E-01 8.385E-01 8.323E-01 8.307E-01 8.30X-01 8.303E-01 8.302E-01 8.302E-01 8.302E-01 8.302E-01 
1.OOOE+OO 9.09OE-01 8.899E-01 8.ESbE-01 8.846E-01 8.843E-01 8.84X-01 8.84X-01 8.843-01 8.84X-01 8.843-01 
l.OWE+OO 9.531E-01 9.4X-01 9.414E-01 9.408E-01 9.407E-01 9.407E-01 9.407E-01 9.407E-01 9.407E-01 9.407E-01 
l.OOM+oO l.OOOE+OO l.OOOE+OO l.OOOE+OO l.OOOE+OO 1.OOceOO l.OOOE+Ga l.OOOE+OO l.mE+OO l.wlE+OO l.OOOE+OO 

h\ Ic 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.0 : 
-.6 : 
-.4 : 
-.2 : 
0 : 

.2 : 

.4 : 

.6 : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.e : 
-.b : 
-.4 : 
-.2 : 
0 : 

.? : 

.4 : 

.b : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

83(2,R,r,Bu) for r = 8 

1 2 4 8 lb 32 64 128 256 512 1024 
.--------_---------_----------------------------------. .____________-__________________________------------------------- 

1.OOwOO 2.OOOoOO 4.OOOE+Oo 8.@OE+oO 1.bOOE41 3.2OWOl 6.4OOE41 1.28OE92 2.560&02 5.12OE+O2 l.O24E+O3 
1.OON+OO 1.737E+OO 3.019EMO 5.247E90 9.12bE+OO l.fB%+Ol 2.763E+Ol 4.809Ml 8.371E+Ol 1.457!M2 2.537E92 
1.OOOE+oo 1.509WO 2.276EHM 3.4X+00 5.191E+00 7.SOE+OO 1.18@+01 1.79WOl 2.72391 4.12bWU 6.251E91 
l.OOOE+OO 1.311EKM 1.717E+OO 2.251E+OO 2.952E+oo 3.877E90 5.096E+OO b.704E+OO 8.82%+00 l.l62E+Ol 1.532E91 
1.OOWOO l.l42E*00 1.302E+OO 1.484E+OO l.bpJ+OO 1.932E+OO 2.206MO 2.52OE+OO 2.@2E+tM 3.296E+OO 3.773E+oo 
l.cJmE+c)r) 1.OOOE+OO 1.OOmOO l.caOE+aO l.OOOE+OO 1.oooE90 1.OOmOO 1.mE+OO l.OOOE+OO 1.oooE+OO I.OOOE+w 
1.‘.WE+OO E.BlE-01 7.B3E-01 7.059E-01 6.3SlE-01 5.739E-01 5.208E-01 4.747E-01 4.3466-01 3.997E-01 3.659-01 
1.OOOE+oo 7.9b5E-01 6.489E-01 5.405E-01 4.bOOE-01 3.996E-01 3.5)1E-01 3.198E-01 2.9X-01 2.741E-01 2.592E-01 
l.MOfMO 7.331E-01 S.b6bE-01 4.614E-01 3.939E-01 3.502E-01 3.21bE-01 3.028E-01 2.904E-01 2.82X-01 2.76X-01 
l.OWE+OO 6.931E-01 5.2$4E-01 4.39OE-01 3.896E-01 3.62OE-01 3.4&S01 3.374E-01 3.323E-01 3.294E-01 3.27X-01 
l.@.ME+OO 6.7X-01 5.23OE-01 4.52bE-01 4.191E-01 4.03OE-01 3.952G01 3.91X-01 3.89X-01 3.@4E-01 3.879E-01 
1.~90 6.71#-01 5.405E-01 4.87bG01 4.b61E-01 l.!Zf-01 4.5X-01 4.518-01 I.SllE-01 4.50&T-01 4.507E-01 
l.OOOE+OO 6.838-01 5.732f-01 5.347E-01 5.212-01 5. ME-01 5.14bE-01 5.14OE-01 5.137E-01 5.13bE-01 5.136E-01 
l.OOOE90 7.OblE-01 6.195E-01 5.878E-01 5.79X-01 5.767E-01 5.759E-01 S.ME-01 5.75&r&01 5.75X-01 5.755E-01 
l.O@X+OO 7.3blE-01 6.634E-01 6.436E-01 6.382E-01 6.367E-01 6.363E-01 6.362E-01 6.361E-01 6.361E-01 6.361E-01 
1.WOE+OO 7.717E-01 7.147E-01 7.MME-01 6.968E-01 6.959E-01 6.957E-01 6.957E-01 6.957E-01 6.957E-01 6.957E-01 
l.OOOE+OO 8.115E-01 7.6806-01 7.57e01 7.554E-01 7.548E-01 7.wE-01 7.54&-01 7.546E-01 7.54&E-01 7.546E-01 
l.OtW+OO 8.54&E-01 8.23OE-01 8.159E-01 8.142E-01 8.1X-01 8.137E-01 8.137E-01 8.137E-01 8.137E-01 8.137E-01 
1 .OOOE+OO 9.OO?E-01 8.797E-01 8.75lE-01 8.741E-01 8.M-01 8.7X-01 8.737E-01 8.737E-01 8.737E-01 8.737E-01 
1.wmoo 9.489E-01 9.386E-01 9.36x-01 9.357E-01 9.356E-01 9.356E-01 9.35bE-01 9.35te01 9.35bE-01 9.356E-01 
1.OwE+OO 1.OOwOO l.OOOE+OO l.OOOE+OO 1.OOOE+OO 1.OOOE+OO 1.OOcmO 1.OOOE+oo 1.mcwO l.OOmOO l.OOM90 
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83(2,Pl,r,u) for r = 16 

1 2 4 8 16 32 64 128 256 512 1024 
.----------------------------------------------------------------------------------------------------------------------- 

1.o@lE+oo 2.OOOE+OO 4.OOOE+OO 8.oooE90 1.6OOE+Ol 3.2OmOl 6.4OOE+Ol 1.2mE42 2.wE+O2 5.12mO2 1.024E+o3 
l.oooE90 1.74MOO 3.02S+OO 5.269E+OO 9.171E400 1.59&+01 Z.mE+Ol 4.-l 8.42191 1.467E+O2 2.55X402 
l.OOUEMO 1.513E+W 2.29OE90 3.467E*oo 5.249E+OO 7.95WOO 1.204E+Ol l.@?E+Ol 2.76!!E+Ql 4.19lE91 6.351E+Ol 
l.oooE90 1.316E+OO 1.732~+00 2,280E+00 3,001E+00 3.95X*00 5.209W0 h86SOO 9.@51E90 1.194EMl 1.574E*ol 
l.OO@*oo 1.146E+oo 1.312E*oo 1.50’6+00 l.TzoE90 l.WOE+W 2257EMO 2.587DOO 2.966E+OO 3.4OlE+OO 3.9OlE+OO 
l.OOlmal l.mmOO l.OOOE+OO l.OOOE+oO 1.OOOE+oo 1.OOOEMO l.OwE+OO l.OOOEa l.OOOE+OO 1.OOOE*oo 1.OOOE+oo 
l.UJOE+OO 8.788E-01 7.752E-01 6.8KE-01 6.089E-01 5.42OE-01 4.S39E-01 4.334E-01 3.894E-01 3.511E-01 3.178E-01 
l.OOOE+OO 7.826E-01 6.22S-01 5.026E-01 4.132E-01 3.458E-01 2.949E-01 2.564E-01 2.27X-01 2.052E-01 l.BBsE-01 
l.OOOE+OO 7.11X-01 5.287E-01 4.112E-01 3.SOE-01 2.853E-01 2.527E-01 2.313E-01 2.17Z-01 2.0X-01 2.017E-01 
l.oooE+M 6.6ME-01 4.845E-01 3.838E-01 3.275E-01 2.958E-01 2.7TE-01 2.84E-01 2.615E-01 2.98lE-01 2.562E-01 
l.MOE+OO 6.455E-01 4.785E-01 3.992E-01 3.612E-01 3.426E-01 3.33S-01 3.29OE-01 3.267E-01 3.256E-01 3.25OE-01 
l.OOOE+OO 6.446E-01 S.OOlE-01 4.41oE-01 4.167E-01 4.065E-01 4.021E-01 4.003E-01 3.99X-01 3.991E-01 3.=-01 
1.oooE+OO 6.597E-01 5.39S01 4.WOE-01 4.81X-01 4.7=-01 4.74S-01 4.7SE-01 4.735E-01 4.734E-01 4.734E-01 
l.OOOE+W 6.865E-01 5.891E-01 5.59lE-01 5.498E-01 5.469E-01 5.46OE-01 5.458-01 5.457E-01 5.456E-01 5.456E-01 
l.OOK+OO 7.21OE-01 6.439E-01 6.227E-01 6.16X-01 6. NE-01 6.149E-01 6. ME-01 6.148E-01 6.1111-01 6.148E-01 
1.OOOE90 7.60&01 7.008E-01 6.859E-01 6.821E-01 6.812E-01 6.80%-01 6.WE-01 6.809E-01 6.809E-01 6.80%-01 
l.OOMOO 8.03%E-01 7.586E-01 7.48OE-01 7.45X-01 7.449E-01 7.447E-01 7.44X-01 7.447E-01 7.44X-01 7.447E-01 
l.OOOE90 8.49SE-01 8.169E-01 8.096E-01 8.079E-01 8.075E-01 8.074E-01 8.074E-01 8.074E-01 8.074E-01 8.074E-01 
l.OOOE+OQ 8.974E-01 8.762?i-01 8.715E-01 8.704E-01 8.701E-01 8.701E-01 8.701E-01 8.701E-01 8.701E-01 8.701E-01 
1.@ME+OO 9.475E-01 9.37OE-01 9.346E-01 9.341E-01 9.34&I-01 9.339E-01 9.339E-01 9.3X-01 9.339E-01 9.3X-01 
l.OOOE+OO l.OOOE+@l 1.OOmOO 1.OON*oo l.wJOE+OO l.OOOE40 1.KmOO l.OwBOO 1.OOOEm l.amE+cQ l.OOOE+OO 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.8 : 
-.6 : 
-.4 : 
-.2 : 
0 : 

.2 : 

.4 : 

.6 : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

h\ M= 1 2 4 8 16 32 64 128 256 512 1024 
_--------. .-------__------------------------------------------------------------------------------------------------------------ 

-2 . l.OC@EMO 2.OWE+OO 4.OOOE+OO 8.OOOE+OO 1.6OOE+Ol 3.2QOE+Ol 6.4OOE+01 1.26OE+O2 2.56OE92 5.12fDO2 l.O24E+O3 
-1.8 : 1.oooE+OO 1.741E+OO 3.OXDOO 5.27bE+OO 9.lslEdo 1.595tKN 2.784E+Ol 4.847BOl 8.439E91 1.469E+O2 2.558+02 
-1.6 : l.OOOE+OO 1.515E+oo 2.295E+OO 3.477E+CQ 5.2bWOO 7.984000 1.21OE~l l.BME+Ol 2.77X+01 4.212E+Ol 6.384E+Ol 
-1.4 : l.OOOE+OO 1.318E+OO 1.73BE+OO 2.291E+OO 3.02OE+OO 3.982!+00 5.252E90 6.927E+OO 9.137EMO 1.205E+Ol 1.59OE+Ol 
-1.2 : l.OOOE+OO 1.147EMO 1.316E+oo l.SlOE+OO 1.732E+OO 1.98X+00 2.28OE90 2.6M+oo 3.003E90 3.447EW 3.957E+OO 
-1 : 1.OOOEw l.OOOE+OO l.OOOE+OO l.Oc@E+OO l.mOE+OO l.cwOE+OO l.OmE+c@ l.wOE*oo l.aoE+OO l.wOE+OO l.OOOE+c@ 
-.8 : 1.OOOWO 8.75X-01 7.677E-01 6.747E-01 5.941E-01 5.24OE-01 4.6NE-01 4.1OOE-01 3.639t-01 3.237E-01 2.WE-01 
-.b : 1.00X+X 7.7X-01 6.052E-01 4.789E-01 3.=-01 3.12OE-01 2.577E-01 2.16&I-01 1.855E-01 1.61X-01 l.UlE-01 
-.4 : l.OOOE+OO 6.97X-01 5.03oE-01 3.77N-01 2.95&T-01 2.41X-01 2.059E-01 1.826E-01 1.672-01 1.57itk01 1.505E-01 
-.2 : l.K10E*oo 6.48OE-01 4.532E-01 3.445E-01 2.83X-01 2.486E-01 2.28EE-01 2.17!%-01 2.llOE-01 2.073E-01 2.051E-01 
0 : l.OOOE+OO 6.2SlE-01 4.465E-01 3.609E-01 3.194E-01 2.991E-01 2.891E-01 2.841E-01 2.816E-01 2.804E-01 2.798E-01 
.2 : l.OCQE+OO b.256E-01 4.71%E-01 4.08X-01 3.821E-01 3.71OE-01 3.66X-01 3.64X-01 3.634E-01 3.63(X-01 3.628E-01 
.4 : 1.OOOE*oo 6.444-01 5.172-01 4.723E-01 4.561E-01 4.sOJ-01 4.48lE-01 4.47X-01 4.471E-01 4.469E-01 4.46X-01 
.b : l.OOOE+OO 6.747E-01 5.733E-01 5.418E-01 5.321E-01 5.29OE-01 5.28N-01 5.277E-01 5.276E-01 5.276E-01 5.276E-01 
.8 : l.OOOE+OO 7.12EE-01 6.333E-01 b.llQ-01 6.054E-01 6.OSE-01 6.033E-01 6.032E-01 6.032f-01 6.031E-01 6.031E-01 
1 : l.OOOE+OO 7.55X-01 6.941E-01 6.7@E-01 6.7%X-01 6.74OE-01 6.7X-01 6.737E-01 6.737E-01 6.737E-01 6.737E-01 
1.2 : l.OC@E+oo 8.004E-01 7.54X-01 7.4X-01 7.412E-01 7.40&01 7.405E-01 7.4ME-01 7.404E-01 7.404E-01 7.404E-01 
1.4 : l.OOOE+OO 8.475E-01 8.146E-01 8.07X-01 8.055E-01 8.051E-01 8.05OE-01 8.05OE-01 8.049E-01 8.04X-01 8.049E-01 
1.6 : 1.00@*00 8.964E-01 8.75OE-01 8.702E-01 8.691E-01 8.68X-01 8.688E-01 8.6WE-01 8.6WE-01 8.6ME-01 8.688E-01 
1.8 : l.O(KXbo 9.471E-01 9.36S-01 9.341E-01 9.336E-01 9.D4E-01 9.3X-01 9.334E-01 9.334E-01 9.334E-01 9.3X-01 
2 : 1.oooE+oo 1.OwE+OO l.OOOE+OO 1.OOOE*oo 1.OOmOO 1.OOmOO l.lmE+OO l.mE+OO l.oooE+QO l.mE+OO l.OME90 

83(2,M,r,u) for r = 32 
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B3(2,rl,r,u) for r = b4 

1 2 4 0 lb 32 b4 128 256 512 1024 
-________-__-_-_-___------------------------------------------------------------------------------------------ .-e-e-e-e- 

l.oooE90 2.OOOE+OO 4.OOOE+OO 8.oooE*oo l.bOOE91 3,2OOE+01 6.4OOE+Ol 1.20OE+O2 2.=+02 5.12OE+O2 1*024E+O3 
l.OOOE+OO l.?4lE+OO 3.03lE+OO 5.277Ea 9.188E+OO l.bOOE+Ol 2.785001 4.849E91 8.UJ41 1.47OE+O2 2.55%02 
l.OOOE90 1.515E+OO 2.297E90 3.48lE90 5.zTsE90 7.99S+OO 1.212E+Ol 1.83bE91 2.784E+Ol 4.219E+Ol b.395001 
l.OO@+OO 1.319EMO 1.7)(r90 2.295E+OO 3.027E+M 3.99X+00 5.2bBE90 b.%CC+M 9.17OE4OO 1.2loE+Ol 1.596001 
l.OOOE+ca l.l4&mO 1.318E*oo l.5lJ+OO 1.737E+OO 1.99290 2.29mOO 2.b29E+OO 3.019E+oO 3*4b7E+OO 3.98lE+00 
l.mE+OO l.OOmOO l.OOOE90 l.OOOENO l.OwE+a l.aME+OO l.OOma l.OOcE+OO l.oooE+OO l.OON*oo l.OO@+OO 
l.OOOE+OO 8.733E-01 7.635E-01 b.b83E-01 5.856E-01 5.137E-01 4.512E-01 3.9b7E-01 3.493E-01 3.08lE-01 2.722E-01 
l.OOoE+OO 7.mE-01 5.945E-01 4.b37E-01 3.b5OE-01 2.wE-01 2.34OE-01 1.912E-01 l.sBBE-01 1.343E-01 l.mE-01 
l.OOOE+OO b.875E-01 4.849E-01 3.53lE-01 2.bbEG01 2,1OZ-01 1.73OE-01 1.485E-01 1.32X-01 1.2lbE-01 1. ME-01 
l.OOOE*oo b.34lE-01 4.299E-01 3.152E-01 2.504E-01 2.13X-01 1.924E-01 1.804E-01 1.734E-01 l.bpsE-01 l.b72E-01 
l.oooE+OD b.O98E-01 4.22S-01 3.ZOE-01 2.8806-01 2.b63E-01 2.556E-01 2.503E-01 2.474E-01 2.4b3E-01 2.45bE-01 
l.OOOEMO b.llbE-01 4.512E-01 3.84hE-01 3.5ME-01 3.45OE-01 3.1ooE-01 3.3X-01 3.3b9E-01 3.3b5E-01 3.363-01 
l.OOOE90 b.33Z-01 5.02lE-01 4.553E-01 4.384E-01 4.323E-01 4.3OCf-01 4.292E-01 4.289E-01 4.28%-01 4.287E-01 
l.OME+OO b.bX-01 5.634E-01 5.3lOE-01 5.2lOE-01 5.1X-01 5.lb8E-01 S.lbS-01 5.lb4E-01 5.lb4E-01 5. ME-01 
l.OOOE+OO 7.082E-01 6.274-01 b.O5lE-01 S.WOE-01 5.973E-01 5.9b9E-01 5.9b7E-01 5.9b7E-01 5.9b7E-01 5.967E-01 
l.@OE+OO 7.52tE-01 b.#)(1E-01 6.753E-01 b.7lR-01 b.705E-01 b.702E-01 b.7OZ-01 6.702E-01 b.702E-01 6.702E-01 
l.OOOE+OO 7.99OE-01 7.527E-01 7.419E-01 7.392-01 7.mE-01 7.mG01 7.386E-01 7.abE-01 7.abE-01 7.38tE-01 
l.OOOE+OO 8.4&E-01 8.137E-01 8.‘%3E-01 8.045E-01 8.041E-01 8.04CC-01 8.04OE-01 8.04OE-01 8.04OE-01 8.04OE-01 
l.OOOE+OO 8.9bOE-01 8.745E-01 8.698E-01 8.687E-01 8.b84E-01 8.684E-01 E.ME-01 8.b84E-01 8.684E-01 8.@4E-01 
l.oooE+OO 9.47OE-01 9.3bx-01 9.34w01 9.334E-01 9.33x-01 9.33z-01 9*332E-01 9.332E-01 9.332E-01 9.332E-01 
l.OoOE+Oo l.OOwaI 1.OOM*oo 1.oOOE90 1.OOOE+OO l.OOOE+OO l.OOOE+Oo l.OOOE+Oo l.oooE+OO l.mE+aO 1.00X+00 

Rl\ m 
- - - -s-w-m 

-2 : 
-1.8 : 
-1.6 : 
-1.4 I 
-1.2 : 
-1 : 
-.8 : 
-.b : 
-.4 : 
-.2 : 
0 : 

.2 : 

.4 : 

.b : 

.8 : 
1 : 
1.2 : 
1.4 : 
1.b : 
1.8 : 
2 : 

h\ * 
_________ 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.a : 
-.6 : 

1 : 
::2 : 
0 : 
.2 : 
.4 : 
.6 : 
.8 : 
1 : 
1.2 : 
1.4 : 
1.b : 
1.8 : 
2 : 

B3(2,Il,r,aJ) for r = 128 

1 2 4 8 lb 32 b4 128 256 512 1024 
,_______--_______--_---. .---------_-___-__--____________________--------------. ._-___-__-__. .__________--___--------------- 

l.mOE+oo 2.OOOEm 4.OOOE+oo 8.oooE90 l.taOE+Ol 3.2OOwJl 6.4OOEMl 1.m+o2 2.560692 5.120692 l.O24E+O3 
l.oooE+OO 1.74lE+OO 3.03lE+OO 5.278E+OO 9.189E+OO l.bOOE+Ol 2.786001 4.85oE+ol 8.444001 1.47OE92 2.5&X+02 
l.OomOO 1.5lbE*oo 2.297E+OO 3.482EMO 5.277E+OO 7.99+@300 1.212WOl l.WmOl 2.7ESOl 4.221E+Ol b.BEf+Ol 
l.cJOcmoO 1.315000 1.74lE+OO 2.29t000 3.03OE+OO 3.W7E+OO 5.274E+oo b.959WQ 9.182ENO 1.212E+ol 1.599E91 
l.Oo@+OO l.l48E*oo 1.319E+w 1.515EMO 1*739E+OO 1.99mOO 2.294E90 2.635E+oo 3.026Em 3.47!%00 3.99z+oo 
l.OcoE+oo l.caE+c@ 1.OOOEa.l l.OOOE+OO 1.mE90 1.OOOE+Oo l.OOOE+OO l.WOE+KJ l.oooE+oo l.mOE+oO 1.OOOE+OO 
l.O@DOO 8.72lE-01 7.6llE-01 L&NE-01 5.80@-01 5.07X-01 4.444E-01 3.89lE-01 3.4lOE-01 2.W2E-01 2.627E-01 
l.OGQE+oO 7.b47E-01 5.875E-01 4.539E-01 3.529E-01 2.7b4E-01 2.186E-01 1.747E-01 1.415E-01 l.l64E-01 9.729E-02 
1.oooE+OO 6.803-01 4.noE-01 3.359E-01 2.4b7E-01 1.88lE-01 1.494E-01 1.24OE-01 l.O72E-01 9.614-02 8.884E-02 
1.OOccm 6.235E-01 4.12lE-01 2.928E-01 2.252E-01 1.8&E-01 l.t&E-01 1.519E-01 1.447E-01 1.405E-01 l.BlE-01 
1.mE+OO 5.978E-01 4.03&T-01 3.094E-01 2*634E-01 2.407E-01 2.294E-01 2.238E-01 2.2lOE-01 2.19s01 2.189E-01 
l.OOOE+OO b.OllE-01 4.mE-01 3.bbs-01 3*37bE-01 3.25x-01 3.2OOE-01 3.17x-01 3. ME-01 3.1bx-01 3.162E-01 
l.OOmOa 6.mE-01 4.914E-01 4.43x-01 4.25x-01 4.19tE-01 4.17x-01 4. ME-01 4.lblE-01 4.lKGOl 4.159E-01 
l.oooE+OO b.62bE-01 5.57lE-01 5.242E-01 5. SE-01 5.107E-01 5.097E-01 5.094E-01 5.09x-01 5.092E-01 5.092E-01 
1.oooE+oo 7.05bE-01 6.24OE-01 b.OlbE-01 5.954E-01 5.937E-01 5.932E-01 5.93lE-01 5.9aE-01 5.93@-01 5.93OE-01 
l.Oca+Oo 7.513E-01 b.BPlE-01 6.73bE-01 b.697E-01 6.b87E-01 6.685E-01 6. M-01 b.b84-01 b.WCOl b.b84E-01 
l.mE+OO 7.9aE-01 7.5206-01 7.4llE-01 7.M-01 7.M-01 7.378E-01 7. m-01 7.378E-01 7.376-01 7.3x-01 
l.OOOEMO 8.4UE-01 8.13x-01 8.059E-01 8.042E-01 8.0x-01 8.037E-01 8.037E-01 8.037E-01 8.@37E-01 8.037E-01 
l.OOOE+OO 8.95X-01 8.746-01 8.69bE-01 8.W-01 8.b83E-01 8.#2E-01 8.mE-01 8.b8Z-01 8.b82E-01 8.bRCOl 
l.OOmOO 9.4bw01 9.36x-01 9.339E-01 9.3346-01 9.332E-01 9.332E-01 9.332E-01 9.33z-01 9.332E-01 9.332i-01 
l.OOoE+oo l.OoceoO l.OOOE90 l.OwE+OO l.OwE+OO l.OOOE*oo l.OOmOO l.OOOE+OO l.OOOE+OO l.OKc90 l.OOa+OO 
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83(2,fl,r,ul fm r * 2% 

hJ\ k 

-2 : 
-1.8 : 
-1.6 : 
-1.4 : 
-1.2 : 
-1 : 
-.8 : 
-.b : 
-.4 : 
-.2 : 
0 : 
.2 : 
.4 : 
.b : 
.8 : 
1 : 
1.2 : 
1.4 : 
1.6 : 
1.8 : 
2 : 

hJ\ k 1 2 4 8 lb 32 64 
______-___ .-__----___-_______-____________________-------------------------------------. 

-2 : l.MOE+OO 2.OOOE+OO 4.OOOE90 8.OOOE+oo 1.6ooEMl 3.2OMOl 6.400001 
-1.8 : l.OOOEcoO 1.74lE+OO 3.03lE+OO 5.278E+OO 9.19OE+OO l.bOGE+Ol 2.78GMl 
-1.6 : l.OON+OO 1.5lbE+OO 2.297E+OO 3.482E+oo S.278E+OO 8.OC@E+M 1.21X91 
-1.4 : l.OOOE+GO 1.319E+OO 1.74lE+OO 2.297E90 3.03lEMO 4.WOE+OO 5.277EKXI 
-1.2 : l.OOOE+OO l.l49E+OO 1.31#+00 1.5lbWM 1.74lEMO 2.OOK90 2.297E+OO 
-1 : l.OoOE+OO l.mE+OO l.oooE+oo l.OoOE+oO l.OOM+M l.OOOE+OO l.OOoE+OO 
-.8 : l.OOOE+OO 8.71lE-01 7.S05E-01 6.614E-01 5.7b5E-01 5.02bE-01 4.WG01 
-.b : l.OOOE+N 7.bO8E-01 5.8GG-01 4.43?E-01 3.398E-01 2.614E-01 2.0X-01 
-.4 : l.OGOE+OO 6.712E-01 4.55X-01 3.143E-01 2.2lJ-01 l.bOlE-01 l.l99E-01 
-.2 : l.OOOE+OO b.O@E-01 3.87oE-01 2.613E-01 1.897E-01 1.487E-01 1.2S3E-01 
0 : l.OOOE+OO 5.803E-01 3.7blE-01 2.7b4E-01 2.274-01 2.031E-01 1.91lE-01 

.2 : 1.OOWOO 5.8b3E-01 4.13bE-01 3.413E-01 3.108E-01 2.978E-01 2.922E-01 

.4 : l.OOOE+C@ b.l62E-01 4.78lE-01 4.284E-01 4.104E-01 4.039E-01 4.014E-01 

.b : l.MOE90 6.57bE-01 5.SO4E-01 S.lb9E-01 5.064E-01 S.O3lE-01 S.OZlE-01 

.8 : l.OOOE90 7.03X-01 6.2llE-01 5.984E-01 5.92lE-01 S.904E-01 5.899E-01 
1 : l.oooE+OO 7.WE-01 6.879E-01 6.723-01 b.WE-01 b.674E-01 6.67Z-01 
1.2 : l.OOWOO 7.9806-01 7.51X-01 7.406&01 7.38lE-01 7.JEsE-01 7.37X-01 
1.4 : l.oooE9o 8.463E-01 8.132E-01 8.OS7E-01 8.MOE-01 8.03&&-01 8.03X-01 
1.6 : l.OOOE+OO 8.9SK-01 8.74X-03 8.696E-01 8.6BSE-01 8.682E-01 8.682E-01 
1.8 : l.OOoEMO 9.4b9E-01 9.362s-01 9.339E-01 9.33x-01 9.332E-01 9.3sE-01 
2 : l.OOOE+oO l.mwOO l.OOaOO l.wOE+OO l.OoOE+w l.oooE+OO l.OOoE+a 

1 2 4 8 lb 32 64 128 256 512 1024 
.---_-_---------------------------------------------------------------------------------------------------------------- 

1.OOWOO 2.OOOE+OO 4.OWEMO 8.oooE*oo l.bOOE+Ol 3.2ooE*ol 6.IooE41 l.zBoEW 2.SbOE+O2 S.l2OE+O2 1.024003 
l.OOOE+OO 1.74lE+OO 3.03lE+OO S,278E+OO 9.189E90 1.64OE*ol 2.786001 4.8SOE+Ol 8.445001 1.47OEM2 2.560692 
l.OoOE*oo l.SlbE+OO 2.297E+oO 3.46moO 5.278E+oO 7.9wEMO 1.21mol lmeE41 2.78wol 4.22z91 6.399E+Ol 
l.O&X+OO 1.315WOO 1.74lEMO 2.297E*oo 3.03lEMO 3.95’5lHO S.m*oo 6.%2E*oo 9.187EMO 1.212E+Ol l.S99EMl 
l.OOwaO 1.145000 1.31mca 1.51SE+00 1.74aE90 1.999EtOO 2.296000 2.637E90 3.029E+oO 3.479E+oO 3.996000 
l.OoOE+OO l.OOoE+oO l.ooOE+OO 1.oomoO l.amoO 1.ooOE90 l.OomoO 1.ooceoO l.oomoO l.ooaMO l.OcmE+OO 
l.OOOE+OO 8.714E-01 7.S97E-01 6.62bE-01 S.78lE-01 S.O45E-01 I.IosE-01 3.848E-01 3.363E-01 2.941E-01 2.!7J-01 
l.OOWOO 7.623E-01 5.83OE-01 4.47X-01 3.4SOE-01 2.674E-01 2.&E-01 1.64OE-01 1.3OZ-01 l.WE-01 8.S33E-02 
l.OOOE+OO b.BlE-01 4.626E-01 3.23!!E-01 2.32lE-01 1.72OE-01 1.32J-01 l.O62E-01 8.699E-02 7.763E-02 7.014E-02 
l.OWE+OO b.lS2E-01 3.98lE-01 2.7S3E-01 2.054E-01 1.65X-01 1.427E-03 1.29bE-01 1.22lE-01 1.178E-01 l.lSX-01 
l.O00E+oo S.WZ-01 3.WSE-01 2.913E-01 2.436E-01 2.2OlE-01 2.081E-01 2.026E-01 1.997E-01 1.982+01 1.97X-01 
l.OOWOO 5.92+01 4.23X-01 3.S25E-01 3.zlbE-01 3.099E-01 3.M-01 3.022E-01 3.0llE-01 3.007E-01 3.005E-01 
l.OOOE+OO b.202E-01 4.WE-01 4.347E-01 4.17OE-01 I.losE-01 4.08lE-01 4.072G01 I.ObpE-01 4.068-01 4.067E-01 
l.O@lE+OO b.S9tG01 S.S3OE-01 5.198E-01 5.092-01 S.%lE-01 S.OSlE-01 S.047E-01 S.WE-01 S.046E-01 S.046E-01 
l.OOWOO 7.042f-01 6.221E-01 5.995E-01 5.93Zf-01 S.916E-01 S.91lE-01 5.9lOE-01 5.914-01 S.OlOE-01 S.9lOE-01 
l.OOOE+OO 7.507E-01 6.88X-01 b.MK-01 6.680E-01 6.679E-01 6.676E01 6.67bE-01 6.675E01 6.)7X-01 6.6X-01 
1.OOOE*00 7.98lE-01 7.516E-01 7.e-01 7.3B2E-01 7.37bE-01 7.37X-01 7.372-01 7.374E-01 7.374E-01 7.374-01 
l.OWE+oo 8.4ME-01 8.132E-01 8.OS8E-01 8.04lE-01 8.036E-01 8.036E-01 8.03SE-01 8.03X-01 8.035E-01 8.035E-01 
l.OOWOO 8.9S#i-01 8.74J-01 8.69bE-01 8.&X-01 8.682G01 8.682E-01 8.68X-01 8.682E-01 8.682E-01 8.Wf-01 
l.OooE+OO 9.4b9E-01 9.3b2E-01 9.339E-01 9.333E-01 9.33ie01 9.33iE-01 9.332E-01 9.332E-01 9.332E-01 9.332E-01 
l.OwE+oo l.OOoE+oO l.OOOE+@l l.OOoEMO l.OOOENIO l.oooE*oo l.OOmOO l.cooE+oo l.OOOE+oO l.OON+Oa l.OOe+OO 

@3(2,H,r,ad far r = 512 

128 2% 512 1024 
.____-____--____________________________-- 

l.BOEtO2 2.SbWO2 5.12OE92 l.O24E+o3 
4.85oE+Ol 8.445EW 1.47OE+92 2.!ME+O2 
1.83891 2.786EW 4.222001 b.4OOE41 
6.9b4ENiO 9.189E90 1.212f+Ol l.bOOE+Ol 
2.bXMO 3.03OE90 3.48lE90 3.9%X10 
l.OOOE+oO l.OOmOO l.OOOE+oo l.oooE90 
3.82X-01 3.3X-01 Z.PllE-01 2.542E-01 
l.sIOE-01 1.229E-01 9.709E-02 7.7SlE-02 
9.31&E-02 7.SblE-02 b.WE-02 5.63#-02 
l.llBE-01 l.O4lE-01 9.976-02 9.7lbE-02 
1.85lE-01 1.82lE-01 1.8ObE-01 1.799E-01 
Z.BpBE-01 2.887E-01 2.8&X-01 2.88lE-01 
4.oo5E-01 I.oOzE-01 4.OOlE-01 4.OOOE-01 
5.01EE-01 S.OlbE-01 5.OlbE-01 S.OlbE-01 
5.898E-01 s.898E-01 5.898E-01 5.89EE-01 
6.67lE-01 6.67lE-01 6.67lE-01 6.671E-01 
t.nr-01 7.373E-01 7.37x-01 7.373E-01 
8.03SE-01 8.03SE-01 8.03SE-01 8.03!fC-01 
8.68lE-01 8.68lE-01 8.68lE-01 8.68lE-01 
9.332E-01 9.332E-01 9.33s01 9.332E-01 
l.OoOE+OO l.OwE+OO l.wE*oo 1.00@90 

38 

TN-333 



W(Z,H,r,u) fur r = 1024 

h\ b 1 2 4 8 lb 32 b4 128 256 512 1024 
--------- ____________--_-____--------------------------------- ._______________________________________--------------- .-em-m--me 

-2 : l.ooGEQo 2.OOoEa 4.oOmOa ROOma l.bOmOl 3.2ooE+Ol b.4OOE+Ol 1.28OE+O2 2.5bOE+O2 5.1X+02 l.O24E+O3 
-1.8 : l.OOOEQO 1.741E+M 3.03lE+OO f.nBE+OO 9.19oE+OO 1.6ooE+Ol 2.78hEtOl 4.85OE+Ol 8.445EQl 1.47OE+O2 2.wE+O2 
-1.6 : l.cmE+Oo l.SlbE40 2.29ma 3.48moo 5.278DOo 8.00@*00 1.213E+Ol 1.838E+Ol 2.78bE+Ol 4.22Z+Ol b.M+Ol 
-1.4 : l.OON+oo 1.3lma 1.741Ea z297E+OO 3903lBOo 4.OOOE*oo 5.278E90 b.9b4BOO 9.189000 1.21%01 l.bm+Ol 
-1.2 : l.OOOE+OO 1.1490QO 1.319E+OO l.SlbE+OO 1.741E+OD 2.00@*00 2.297E+W 2.b3XtOO 3.03lEMO 3.48WOO 3.999mQ 
-1 : l.OOOE+c@ l.mOE+OO l.OoOE+a LOOmOO l.OOOE+Oo l.mE+Oo l.OOoE*oo l.OooE+Oo l.OwE+oO l.OOOE+OO l.OONQO 
-.8 : l.OOOE+oO R708E-01 7.ss-01 ba607E-01 5.7x-01 5.015EQl 4.37aE-01 3sao9E-01 3.32OE-01 2.094E-01 2.522-01 
-.b : l.OOOEMO 7.598E-01 5.78lE-01 4.IobE-01 3.364E-01 2.n-01 1.977E-01 1.5X-01 1.181E-01 9.2lOE-02 7.238-02 
-.4 : l.OOOE+OO 6.68X-01 4.5&E-01 3.07bE-01 2.134E-01 l.SlY-01 1.105E-01 8.N-02 b.WE-02 5.3bE-02 4.bzE-02 
-.2 : l.oooE40 6.03lE-01 3.78OE-01 2.499E-01 1.7b9E-01 1.351E-01 1.112E-01 9.744E-02 8.956E-02 8.504E-02 8.244E-02 
0 : l.OOOE+aO 5.737E-01 3.b5EE-01 2.b3x-01 2.laE-01 1.89OE-01 1.767E-01 1.709-01 l.b75E-01 1.659E-01 1.b52E-01 

.2 : 1.00X+00 5.8llE-01 4.059E-01 3.323E-01 3.012E-01 2.8ea-01 2.82x-01 2.79Ef-01 2.7mE-01 2.7wE-01 2.78lE-01 

.4 : l.OOOE+OO b.l33E-01 4.74OE-01 l.peE-01 4.056E-01 3.99CE-01 3.96%-01 3.95dE-01 3.95X-01 3.951E-01 3.BlE-01 

.b : l.OOOE+OO b.%E-01 5.486E-01 S.lsoEQl 5.04SE-01 5.012E-01 5.00lE-01 4.996E-01 4.WE-01 4.997E-01 4.996E-01 

.8 : l.OOM+OO 7.0X-01 6.204E-01 5.977E-01 5.915E-01 5.897E-01 5.89X-01 5.89lf-01 5.89lE-01 5.891E-01 5.89lE-01 
1 : l.OME+OO 7.SO2E-01 6.877E-01 b.RlE-01 b.b82E-01 b.b72EQ1 6.b7oE-01 b.bbE-01 6.66%01 b.WE-01 6. ME-01 
1.2 : l.OoOE+OO 7.979E-01 7.514E-01 7.40&E-01 7.3&F01 7.372-01 7.371-01 7.37z-01 7.372E-01 7.372E-01 7.372E-01 
1.4 : 1.00@+00 8.463E-01 E.lWE-01 8.057E-01 8.04C01 8.03bE-01 8.OSE-01 8.0X&01 8.035E-01 8.035E-01 8.03X-01 
1.6 : l.O09E+OO &958E-01 8.743E-01 8.bPbE-01 8.@SE-01 8. a-01 8. m-01 8. b8lE-01 8. b8lE-01 8.68lE-01 B.b81E-01 
1.8 : l.OON+oO 9.169E-01 9.3b2E-01 9.339E-01 9.33x-01 9.332E-01 9.33zE-01 9.33iE-01 9.332E-01 9*332E-01 9.332E-01 
2 : I.oooE+oo l.OOwc@ 1.oooEMO l.oOOE+OO l.OOoE+w l.OOoE+OO l.w3E+Oo l.amE+a 1.wmoo l.a@E+oo 1.oooE90 

thl\ N= 1 2 4 8 lb 32 64 128 2% 512 1024 
--------- --_-_---____-__-_-__-------------------------------------------------------------------------------------------------- 

-2 : l.oCm+OO 2.@JOE+OO 4.OOOE+oo 8.OOOE+OO l.bO&+Ol 3.2OK+Ol b,4OOE+Ol 1.28OE92 2.56OE92 5.12OE92 1.024EM 
-1.8 : l.M@E+OO 1.741E40 3.03lE+OO 5.278DOO 9.19OE+oo 1.6OOE+Ol 2.786001 4.8X91 8.445E+Ol 1.47OEM2 2.560692 
-1.6 : l.OOOE+O@ 1.51&00 2.297E+oo 3.482E+OO 5.278E+OO 8.OOOE+oo 1.21X*01 l.M+Ol 2.78&+01 4.222001 6.4OOMl 
-1.4 : l.OOOE+OO l.X?OE+OO 1.741EMO 2.297E+OO 3.03lE+OO 4.OCOE+OO 5.278E+OO 6.9b4E+OO 9.189000 1.21#+01 l.MOE+Ol 
-1.: : l.K@E+M l.l49E+OO 1.315%+00 1.514E+OO 1,74lE+OO 2.OOWOO 2.297E+OO 2.&3%+00 3.03lE+CG 3.482E+OO 4.OOCE+OO 
-1 : l.OoN+w l.amaI l.OOOE+oo l.OOoE+oo l.ccaE90 1.m90 l.oOoE+Oa 1.OOmoo l.OOOE+Oo 1*m+00 i.OoK+w 
-.E: : 1.OO9E+OO 8.707E-01 7.58Z-01 b.b03E-01 S.AlE-01 S.WE-01 4.36X-01 3.8OOE-01 3.3llE-01 2.B5E-01 2.51%-01 
-.b : 1.OOOE+o 7.591E-01 S.748E-01 4.388E-01 3.342E-01 2.549E-01 1.949E-01 1.494E-01 l.l49E-01 8.WlE-02 6.9OlE-02 
-.4 : l.OOOE+OO 6.&Z-01 4.46X-01 3.025E-01 2.07X-01 1.448E-01 l.O35E-01 7.b28E-02 5.831E-02 4.64bE-02 3.664E-02 
-.2 : l.MOE+OO 5.987E-01 3.7OkE-01 2.407E-01 l.bb4E-01 1.24OE-01 9.962E-02 8.5bS02 7.7b3E-02 7.3X-02 7.0X-02 

0 : l.WOE+OO 5.68lE-01 3.57OE-01 2.534E-01 2.02X-01 l.TIoE-01 l.b44E-01 1.58Z-01 l.SSlE-01 1.53X-01 1.527E-01 
.2 : l.OOOE+OO 5.7t&-01 3.995E-01 3.25OE-01 2.934E-01 2.8X%-01 2.742E-01 2.717E-01 2.706E-01 2.70lE-01 2.69X-01 
.4 : l.OOOE+OO b.lllE-01 4.709E-01 4.204E-01 4.02IE-01 3.953E-01 3.92X-01 3.3202-01 3.9lbE-01 3.915-01 3.912-01 
.b : l.oooE90 b.S5ZE-01 5.47X-01 5.138E-01 5.03%01 4.99X-01 4.988E-01 4.985E-01 4.984E-01 4.984E-01 4.984E-01 
.8 : 1.OOOE+OO 7.02bE-01 b.ZOlE-01 S.WJ-01 5.911E-01 5.894E-01 5.889E-01 5.888E-01 5.887E-01 5.887E-01 5.887E-01 
1 : l.OOOE+fN 7.5OlE-01 6,87bE-01 6.72OE-01 6.b8lE-01 b.b7lE-01 b.bb9E-01 b.bb8E-01 b.btS-01 6.668-01 b.bb8E-01 
1.2 : l.OOOEQO 7.97X-01 7.514EQ1 7.405E-01 7.3KE-01 7.374E-01 7.372E-01 7.372E-01 7.37%01 7.372f-01 7.372E-01 
1.4 : l.6ooE+OO 8.4GE-01 8.131E-01 8.057E-01 8.04M-01 8.@3bE-01 8.03X-01 8.035E-01 8.03X-01 8.034E-01 8.034E-01 
1.6 : l.OOOE+OO 8.958E-01 8.74X-01 8.b9bE-01 8.685E-01 8.b82E-01 8.b82E-01 8.68lE-01 8.b8lE-01 8.b8lE-01 8.b8lE-01 
1.8 : l.O@lE+OO 9.4b9E-01 9.3b2E-01 9.339E-01 9.XEQl 9.332E-01 9.33ZE-01 9.33Z-01 9.332E-01 9.332E-01 9.332E-01 
2 : 1.m+00 l.OOOE+OO 1.waE+OO l.oOwOa l.OOoE+oO l.OOoEQo 1.wOE+Oo l.OOoE90 l.OwE+oo l.woE+oo l.mE*oo 

B3c2,fl,r,u) fcr r = 2048 
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83(2,lt,r,mu) fw r = 4096 

It!\* 1 2 4 8 16 32 b4 128 256 512 1024 
_______-_____--_____------------------------------------------------------------------------------------------------------------ 

-2 : 1.WlE+OO 2.WOE90 4.OOWOO 8.OOOEa l.MOE+Ol 3.10#401 6.4OOE+Ol 1.28OE92 2.%OE+O2 5.12OE+O2 1.024E93 
-1.8 : l.OCG+OO 1.741E90 3.031E+OO 5.276000 9.19OWM 1.6OOE+Ol 2.786E91 4.85OE+Ol 8.445E41 1.47OE+O2 2.56OE92 
-1.6 : 1.OOOE+OO 1.516000 2.297E90 3.482E*oo 5.278000 8.OOOE90 1.21J91 l.W8E91 2.78hE491 4.22Z+Ol 6.4OWOl 
-1.4 : l.OOOE+OO lXOE+oo 1.74lE+OO 2.297E400 3.031EMO 4.oooE400 5.278E+OO 6.964E*oo 9.1wEWJ 1.213001 1.6OWOl 
-1.2 : 1.oooE+OO l.l49E+OO 1.319E+OO 1.516E+OO 1.741E+OO 2.@OE+OO 2.297Ea 2.639E+OO 3.031E+OO 3.482ENO I.KG+OO 
-1 : 1.OOmOo l.OOOE+OO l.mE+OO l.mE+OO l.OOOE+OO 1.OOceOo l.OOOE+Oo 1.OmE*oo I.OooE+OO 1.OOOEm l.wlE+OO 
-.8 : l.OOOE+OO 8.706E-01 7.581E-01 6.bDlE-01 5.748E-01 5.005E-01 4.358E-01 3.79Y-01 3.306E-01 2.87#-01 2.508E-01 
-.b : l.OOWOO 7.587E-01 5.76oE-01 4.37bE-01 3.327E-01 2.533E-01 1.93lE-01 1.474E-01 1.129E-01 8.665E-02 6.67X-02 
-.4 : 1.OwE+Oo 6.646E-01 4.1soE-01 2.987E-01 2.woE-01 1.399E-01 9.w-02 7.089E-02 5.279E-02 4.08s~02 3.297E-02 
-.2 : l.OOOE+OO 5.95oE-01 3.645E-01 2.330E-01 l.sI(IE-01 1.148E-01 9.007E-02 7.59@-02 6.777E-02 6.31OE-02 6.042E-02 
0 : 1.oooE+oo 5.&s-01 3.494E-01 2.443E-01 1.925E-01 1.667E-01 1.539E-01 1.47Y-01 1.444E-01 1.428E-01 l.IzoE-01 

.2 : 1.OOOE+Oo 5.733E-01 3.943E-01 3.189E-01 2.87OE-01 2.7x-01 2.67s01 2.65cE-01 2.639E-01 2.634E-01 2.63s01 

.4 : l.mE+OO 6.09s-01 4.&E-01 4.178E-01 3.w4E-01 3.924E-01 3.90s01 3.892E-01 3.w9E-01 3.wE-01 3.w7E-01 
.b : 1.OOOE+OO 6.55@-01 5.4&&-01 5.13oE-01 5.024E-01 4.WlE-01 4.98OE-01 4.977E-01 4.976E-01 4.975E-03 4.975E-01 
.8 : l.OOOE90 7.024E-01 6.199E-01 5.97lE-01 5.90X-01 5.891E-01 5.837E-01 5.W5E-01 5.865E-01 5.86S01 5.8RE-01 
1 : 1.OOOE+OO 7.5OOE-01 b.87bE-01 6.719E-01 6.68OE-01 6.4OE-01 b.btdE-01 b.ME-01 b.WE-01 b.WE-01 b.bb7E-01 
1.2 : 1.OoOE+Oo 7.979E-01 7.514E-01 7.405E-01 7.38aE-01 7.372-01 7.372E-01 7.37x-01 7.372E-01 7.372-01 7.372-01 
1.4 : 1.oooE*oo 8.4CiE-01 8.131E-01 8.057E-01 8.04OE-01 8.03&E-01 8.035E-01 8.034E-01 8.034E-01 8.034E-01 8.034E-01 
1.6 : l.OOWOO 8.958E-01 8.74X-01 8.696E-01 8.68S01 8.682E-01 8.482E-01 8.681E-01 8.681E-01 8.681E-01 8.681E-01 
1.8 : l.OOOE+Oo 9.469E-01 9.362E-01 9.339E-01 9.333E-01 9.332+01 9.3x+01 9.33x-01 9.3xE-01 9.332E-01 9.33x-01 
2 : 1.OOOEMo 1.OoaMO l.OOOE+Oo 1.OooE+Oo 1.oOoE+OO 1.moEMO 1.OfNmaO l.oOOE+OO l.@xeOO l.~+oo l.oOOE90 

h\ m= 1 2 4 8 16 32 
-______-_. .--___-__-__________----------------------------------------------. 

-2 : l.OON+CQ 2.@ME+OO 4.OOOE*oo 8.OOOE90 1.6OWOl 3.2OWOl 
-1.8 : l.OWE+oo 1.741ENO 3.031E+OO 5.278E+@I 9.19C000 1.6OWOl 
-1.6 : l.OON+oo 1.51&00 2.25X+00 3.482DOO 5.278EwM 8.WOEMO 
-1.4 : l.OON+OO 1.321X+00 1.741E+OO 2.25'7000 3.031EMO 4.OWE+OO 
-1.2 : l.GWi+OO l.l49E+OO 1.32OE+OO 1.516E+OO 1.741E+O(, 2.OOOE90 
-1 : 1.OOOE+oo 1.Om90 1.OOceOo 1.OoOE+Oo l.OOOE+Oa l.OOOE+Oo 
-.8 : l.WOE+OO 8.706E-01 7.58tC01 6.599E-01 5.746E-01 5.003E-01 
-.b : l.OOOE40 7.584E-01 5.754E-01 4.%&P01 3.317E-01 2.522E-01 
-.4 : 1.OooE+oo 6.634E-01 4.416E-01 2.959E-01 1.997E-01 1.36x-01 
-.2 : l.OOOE+OO 5.92CC01 3.594E-01 2.2&E-01 1.50&E-01 l.O71E-01 
0 : l.oooE+C@ 5.591E-01 3.4X-01 2.365E-01 l.E3%-01 1.57@-01 

.2 : l.OME90 5.704E-01 3.899E-01 3.139E-01 2.817E-01 2.6X-01 

.4 : 1.oomoo 6.08x-01 4.66#-01 4.159E-01 3.974E-01 3.90&I-01 

.b : 1.OOOE+OO 6.5&E-01 5.463E-01 5.124E-01 5.018E-01 4.985E-01 

.8 : 1.oooE+oa 7.023E-01 6.1pBE-01 5.97oE-01 5.907E-01 5.89oE-01 
1 : l.WOE+‘3l 7.5OOE-01 6.875E-01 b.719E-01 6.68OE-01 b.b7CC-01 
1.2 : l.OOOE+QO 7.979E-01 7.514E-01 7.405E-01 7.aoE-01 7.374E-01 
1.4 : l.OWE+OO 8.46X-01 8.131E-01 8.057E-01 8.04OE-01 8.036E-01 
1.6 : l.OCOE+OO 8.959E-01 8.74X-01 8.696E-01 8.665E-01 8.6KZE-01 
1.8 : 1.Ooma 9.469E-01 9.362E-01 9.339E-01 9.mE-01 9.332E-01 
2 : l.OOOE+Oo l.oOOE+OO l.OOOE+Oo l.OOOE+Oo l.OOaE40 1.OOoE+OO 

B3(2,H,r,ru) for r = 8192 

b4 128 256 512 1024 
.-__-__________-________________________------------- 

6.4OOE41 1.280642 2.56&02 5.12OE+O2 1.02%+03 
2.78&+01 4.85OE+Ol 8.445E*ol 1.47OE+O2 2.%OE+O2 
1.213001 1.838E91 2.766E+ol 4.222E+Ol 6.4OWOl 
5.278E+o 6.964E+OO 9.19OE90 1.21JE+Ol 1.6OWOl 
2.297E+OO 2.639000 3.031E+OO 3.482E+OO 4.oooE+OO 
1.ao3oo l.OoN+w l.ooOE+oO 1.oOoE+tw 1.mEm 
4.356E-01 3.79X-01 3.303E-01 2.876E-01 2.5O!Z-01 
1.918E-01 1.461E-01 1.115E-01 8.523E-02 6.53X-02 
9.444E-02 b.b85E-02 4.864602 3.663-02 2.871E-02 
8.211E-02 6.778E-02 5.95X-02 5.48X-02 5.21X-02 
l.u6-01 l.WE-01 1.351E-01 1.335E-01 1.327E-01 
2.6X-01 2.59X-01 2.583&01 2.578E-01 2.57&E-01 
3.881E-01 3.872E-01 3.8ME-01 3.8tJE-01 3.&57E-01 
4.97S01 4.971E-01 4.97OE-01 4.97OE-01 4.97OE-01 
5.88s01 5.884E-01 5.8ME-01 5.8ME-01 5.w4E-01 
b.b@E-01 b.bUE-01 b.WE-01 6.&Z-01 b.bb7E-01 
7.372-01 7.372E-01 7.37x-01 7.372E-01 7.372E-01 
8.03W01 8.034E-01 8.034E-01 8.W-01 8.034E-01 
8.662f-01 8.681E-01 8.681E-01 8.681E-01 8.68lE-01 
9.332E-01 9.332E-01 9.332E-01 9.mE-01 9.33s01 
l.OOOE+OO l.OOoE+ul l.OOmaO 1.OOmOo l.wOE+OO 
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November 15, 1990 

CHARAmRIZATION OF CLOCKS AND OSCILLATORS 
NISI’ Technical Note 1337 

The additional errata noted on this page represent a continuation of the Notes and Errata in the 
Appendix (page TN-336). 

38. Page TN-3Q 
There are two errors in eq 6.6. The equation for Flicker PM is missing a square root in 
the exponential It should read 

Flicker PM d.f. - H 

In the equation for Flicker FM, the numerator of the upper term should read 2(N - 2)* 
instead of 2(N - 2). The equation should read 

Flicler FM d.f. - 

39. Pace TN-85 

2(N -2)2 i 

2.3N- 4.9 ’ 
for n-l 

. 
sru2 

-4rt(N+ 3n) ’ 
for Ilk2 

There are two errors in the Flicker phase term of Table 12-4. The small n in the the 
denominator of the first logarithmic term should be an m, and the whole quantity in the 
square bracket should have an exponent of ?4. The equation should read 



2 
2 (N-2) 

2.3N - 4.9 

( SQQ TN-30 
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DATE: 12/10/91 

TO: J. Barnes 

FROM: W. Riley 

SUBJECT: Items we discussed at the PTTI Meeting last week 

(1) Typo in J.A. Barnes, "The Measurement of Linear Drift in Oscil- 
lators'l, Proc. 15th PTTI Meetinq, 1983, p. 566 (p. TN-279 of NIST 
Technical Note 1337): 

The.expression for A is missing the term N after the 2nd 3. See 

Pa 568 (TN-281) for the correct expression. 

NON SEQUITUR by Wiley 



E. APPENDIX - Notes and Errata 

The notes listed below are included to bring attention to notation and other problems. The page 
number provides reference to the location of the problem or comment. 

1. page TN-4 
AM noise is especially important in the measurement of the (residual) phase noise added 
by amplifiers and other signal handling components. Often the driving source for the 
measurements is a frequency synthesizer that has phase and/or amplitude noise that is 
comparable or larger than the added noise of the component under test. Most measure- 
ment systems are configured so that the phase noise of the source cancels out to a large 
degree (at high Fourier frequencies decorrelation effects limit the cancellation). In such 
measurement systems, the AM to PM conversion factor and the AM noise of the source 
may then set the noise floor. Discussion of the effect of AM noise and AM to PM 
conversion factors on the accuracy and precision of phase noise measurements is found in 
“Residual Phase Noise Measurements of vhf, uhf, and Microwave Components” by G. K. 

Montress, T. E. Parker, and M. J. Loboda Proc. 43rd Annual Symposium on Frequency 
Control, pp. 349-359 (1989) and in “Accuracy Model for Phase Noise Measurements by F. 
L. Walls, C. M. Felton, and A. J. D. Clements, 21st Annual Precision Time and Time 
Interval Meeting (1989). The notation in these papers as well as that in other parts of the 
literature differs from that given below. Our notation below is drawn from a modest level 
of consensus among individuals responsible for setting standards. We expect that it will 
gradually be adopted within standards committees. The following comments are directed 
specifically at the specification of noise performance. 

The total power spectral density in a signal can be approximated by expanding eq 12-5 of 
paper B.2 (by Stein) and extending it to include the spectral density of relative amplitude 
fluctuations, S,(f). The double-sideband density written in single-sideband form is given by 

O<f<m, 

where 

f 

I(f) is the integrated phase modulation due to the pedestal and a(f) represents the carrier 
with frequency width ?f,. The effect of large S,(f) on power in the carrier has not, to our 
knowledge, been explored. The power spectral density of relative phase fluctuations, S@(f), 
is normalized to one rad’/Hz and S,(f) is normalized to the carrier voltage, but the total 
power spectral density, S,(f) is not normalized and has the units of V2/Hz. All of these 
are single-sided spectral densities. For most measurement purposes, we can disregard the 
carrier and find that, away from the carrier, the above expression simplifies to 
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2. page TN-6 

The more general expression is important only very near the carrier and in certain types 
of frequency multiplication. The single-sideband, amplitude noise, normalized to the total 
signal power is given simply by S,(f) for 0 < f< Q). The measurement of added phase and 
amplitude noise for amplifiers and other signal handling components should specify the 
signal level since the AM noise level and the contribution due to AM-to-PM conversion 
depend on the signal level. 

For a direct measurement, time accuracy only has meaning when the phase of the time- 
base oscillator of the frequency counter is known with respect to some time standard. 
Either it is phase locked or is calibrated with respect to that standard at the time of 
measurement. The phase of the time-base oscillator can then be measured with respect 
to the phase of the frequency standard being calibrated (accounting for cable delays, etc.). 
Except for the cycle ambiguity of the carrier, the phase of the frequency standard being 
measured can carry time information and have time accuracy. This technique is not 
common, but is very useful and eliminates divider noise that typically occurs in going from 
5 or 10 Mhz to 1 pulse per second. Caution must be exercised to assure that the phase 
point measured in a sine wave is at a reproducible voltage and impedance so that the cycle 
ambiguity is an exact integer. 

3. page TN-35 
A second-order servo loop provides substantially enhanced performance. See, for example, 
F.L. Walls and S.R. Stein, “Servo techniques in oscillators and measurement systems,” NBS 
Tech. Note 692 (1976). 

4. page TN-35 
This error can be identified and corrected using the phase modulation scheme described 
in paper B.4 on page TN-136. 

5. page TN-36 
Low-noise DC amplifiers have been substantially improved since publication of this paper. 

6. pages TN-37. TN-91. TN-130. TN-174. TN-206 and TN-218 
The reader is reminded that the discussions of frequency-domain measurements assume 
incoherent noise processes. Often the phase noise spectrum of a signal will contain bright 
spectral features (spurious lines) other than the carrier. Frequency-domain measurements 
are often useful in identifying such features. But if these spurious lines are narrow 
compared to the measurement bandwidth, statistical measures such as S&f) and g(f) are 
not appropriate. It is better to specify the phase deviation in terms of the rms value of 
the phase deviations, erms (rms radians), without reference to bandwidth. This specifica- 
tion in rms radians can be related to the Allan variance (see note # 8 below). 

7. page TN-51 
Humidity is often an important environmental factor. See, for example, J.E. Gray, H.E. 
Machlan and D.W. Allan, “The Effect of humidity on commercial cesium beam atomic 
clocks,” 42nd Annual S’p. on Frequency Control, pp. 514-518 (1988) and F.L. Walls, “The 
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Influence of Pressure and Humidity on the Medium and Long-Term Frequency Stability 
of Quartz Oscillators,” 42nd Annual Sy,mp. on Frequency Control, pp. 279-283 (1988). 

8. page TN-74 
For a bright Iine (one which is narrow compared with the measurement bandwidth), the 
solution of eq 12-27 simplifies to 

where ems is the rms value of the phase deviations. The above relationship may be useful 
where one is trying to determine the effect of a bright Iine in the time domain. If the 
bright line is the dominant factor, the plot of ~$7) versus r has strong sin2(afr) osciha- 
tions and it can be ambiguous. In that case, it is better to provide a specification in terms 

Of hnls without reference to bandwidth. Statistical measures such as or(r) and S@(f) are 
not meant to be used to describe coherent signals. For further discussron see paper B.l, 
section 12.2 (page TN-51). 

9. page TN-75 
A set of brackets, [ 1, are missing in eq 12-29. The equation should read 

2 

modc$t) 1 - (xi+h - 
2r2p(N- 3n + 1) j-1 

2xi+n + ‘i 1 1 . 

10. page TN-119 
The reference (Walls and DeMarchi, 1975) is listed as being on pages 310-317. The page 
numbers should be 210-217. 

11. page TN-121 
Most of the literature uses the expression [V,-, + e(t)] instead of Vu as in eq (2). Vu is the 
peak voltage amplitude and e(t) is the voltage deviation of the amplitude from nominal. 

12. page TN-122 
In eq (5), most of the literature uses x1(t) instead of e(t). e(t) is usually the voltage 
deviation as described in note 11 above. 

13. pace TN-123 
There is an error in the caption for figure 7. The last portion of that caption should read: 
“where f is Fourier frequency ((w = 27rf) and S,(f) = w2SX(f)).” 

14. paee TN-123 
In the right-hand column, last paragraph, 5th line, there is an extraneous minus sign. The 
quantity 77” should read 20. Also, note that the use of supercript r and 70 with 7 is 
not consistent with the new IEEE standard definitions (see paper C.l, page TN-139). 
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15. page TN-124 
In eq 9 the subscript, k - n, should read k + n. That is, the equation should read 

16. nape TN-125 
The quantity ?$(r) is now commonly known as modoar). This latter form has been 
recently adopted by IEEE as the standard terminology. 

17. pape TN-139 
IEEE Std 1139-1988, IEEE Standard Definitions of Physical Quantities for Fundamental 
Frequency and Time Metrology, is an almost exact replica of this paper (D.l). The paper 
was published during the latter period of the development of the standard. The only 
substantial difference is that, wherever it occurs, the word “departure” in the paper is 
replaced in the IEEE standard by “deviation.” 

18. page TN-146 
This widely cited paper provided the de facto standards for terminology and oscillator 
characterization until the recent adoption of the IEEE standard presented in paper C.l 
(page TN-139). F or t erminology, the latest IEEE standard should always take precedence. 
This paper (C.2) is fairly consistent with the IEEE standard. One exception is that, in this 
paper, N denotes the number of frequency measurements. The symbol M in the IEEE 
standard is the same as N in this paper. In the standard, the equation relating M and N 
is M =N-1. 

19. pape TN-151 
Equation (23) can be substantiahy simplified as shown, for example, by Stein (page TN-74, 
eq (12-27)), which is 

20. page TN-154 
In eq 36 the T outside the brackets should be a r. The equation should read 

f(to + t) - x(to) + pJ-y)] 

21. page TN-160 
The 2 expressions listed as eq (95) are in error. They should read 

-h-,t2[3 + 2lnr - 1/(6r2)] ?.Wl 

-hJ73 - 2lnr] ral. 
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22. page TN-160 
In eqs (lOl), (102) (103), (104), and (105), a Greek -y was mistakenly replaced by the 
number 2. In each of these equations the quantity [2 + ln(2nf,r)] should be replaced by 
the quantity [r + ln(2wf,,T)]. 7, Euler’s constant, has the value 0.5772156649........ 

23. page TN-162 
This paper is included in this collection because it presents the internationally accepted 
terminology and definitions. There are no substantial inconsistencies with the new IEEE 
standard (paper C.l, page TN-139), but the latest IEEE standard should is considered to 
be the most up-to-date authority. A new version of this international report should be 
issued by the CCIR in 1990. 

24. page TN-171 
The definitions for symbols used in this paper are fairly consistent with those adopted in 
the recent IEEE standard (C.l). One exception is that, in this paper, N denotes the 
number of frequency measurements. The symbol M in the IEEE standard is the same as 
N in this paper. Another is that, while this paper uses p as the exponent of r in describ- 
ing the power-law noise processes, the paper adopts the opposite sign convention for p. 
v(t) is used where many other papers use V(t) for instantaneous voltage. Some confusion 
is generated when this small v is typeset in the equations to look almost identical to the 
Greek v, a symbol which is used exclusively to represent frequency. For example, In 
equation (1) the left-hand quantity is voltage, whereas the Y(t) and v0 in equation (4) are 
clearly frequencies. Finally, the authors of this paper, in equation (2) define e(t) as the 
normalized amplitude fluctuations, a very sound choice, but the reader should note that 
most other papers have not normalized it. 

25. page TN-175 
For consistency with figure 12 and the text, y(t), the left-hand member of eq (11) should 
probably be u(t). 

26. page TN-177 
Walls, Percival and Irelan (D.4) have recently addressed the more accurate specification 
of the quantity p in eq (12). 

27. page TN-179 
It is important to note that the expressions in Table 2 in this paper are derived assuming 
use of a single-pole filter. The calculations can also be done using an ideal (infinitely 
sharp) filter. The solutions in these two limits are useful because they define the range of 
practical values (using n-pole filters) for the expressions. Table I in this section is an 
expansion of Table 2 of Lesage and Audoin providing both the single-pole results as well 
as the results for an infinitely sharp filter. There are discrepencies in several of the coeffi- 
cients between terms in Table 2 in the paper and those in Table I on the next page. 

28. page TN-180 
Barnes and Allan (paper D.8) have recently completed further analysis of the effect of 
dead time on measurements. 
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Table I. Asymptotic forms of oc( r) for various power-law types and two filter types. Note: w,/27r = f,, is the measurement 
system bandwidth, often called the high-frequency cutoff. In = loge. 

Name of Noise a S,(f) oy2w 

Wh7> >l 
Infinite Sharp 

Filter 

w,s>>l 
Single Pole 

Filter 

w,r<<l 
Infinite Sharp 

Filter 

w$<<l 
Single Pole 

Filter 

White Phase 
%h* 3fllh2 2rr2f;r2h2 f32 

2 h2f2 

(2W)2r2 (21Q2r2 5 27 

Flicker Phase 
(1.038 + 3In(w,,r))h, Pw4i~ Dhl r2P,r2h, 

1 hlf a@)h 
(27Q2r2 (27r)2r2 2 

kl ho 2r2f;r2h, 2r2f2,r h, 
White Frequency 0 h, - - 

2r 27 3 3 

Flicker Frequency -1 h-,f’ n2fir2h-, 

Random-WaIk 
Frequency 

-2 h,f2 
2w2r h, 

3 

2w2r h, 

3 
2r2f,, r 2h, 2n2f,, r 2h, 



29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

page TN-180 
If the ratio of T/r is constant and greater than 1 (the usual case), the problem described 
is eliminated. However, in taking data for a plot of oy< r) versus r, it is difficult to 
achieve this in the hardware and not possible to do it with software processing alone. For 
further discussion see paper D.8 (page TN-296). 

page TN-197 
The most recent definitions and concepts for spectral density are given in a new IEEE 
standard (paper C.l on page TN-138). This new standard should be consulted as the latest 
authority on definitions and terminology. 

page TN-198 
The newly accepted definition of 2(f) is given in paper Cl. This new definition, y(f) = 
v2So(f), was always valid for Fourier frequencies far from the carrier. It has now been 
extended to cover all frequencies. 

page TN-217 
Equation (73) should read 20 log (final frequency/original frequency). 

page TN-239 
On page TN-198 the authors refer to a paper by Glaze (1970). The reference, apparently 
lost in printing, is: Glaze, D.J. (1970). “Improvements in Atomic Beam Frequency Stan- 
dards at the National Bureau of Standards, “IEEE Trans. Instrum. A4eu.r. IM-19(3), 156-160. 

pape TN-257 
There are two errors in Table 2. Under R(n) the first entry should be l/n rather than 1. 
The second item in the same column is not single valued (l), but takes on different values 
for different measurement bandwidths. The reader is referred to section A.6 (page TN-g) 
for a discussion of this topic. 

pages TN-261 and TN-262 
Subsequent work on modoxr) and R(n) is reported in section A.6 (page TN-g) of this 
report. There are some differences between the results in A.6 and the ones reported in 
Tables I and II and Figure 4 in this paper. 

page TN-264 
To be consistent with other papers in the literature, #(t) in eq (1) should probably be 
written as xl(t). 

page TN-268 
The term e(t) in eq (3) is normally used to represent the amplitude fluctuations in the 
output voltage of an oscillator. This term might be better designated Yl(t). 

‘l-N-342 
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